We propose a simple method to predict individuals' expectations about products using a knowledge network. As a complementary result, we show that the method is able, under certain conditions, to extract hidden information at neural level from a customers' choices database.
A method for the construction of approximate analytical expressions for the stationary marginal densities of general stochastic search processes is proposed. By the marginal densities, regions of the search space that with high probability contain the global optima can be readily defined. The density estimation procedure involves a controlled number of linear operations, with a computational cost per iteration that grows linearly with problem size.
A novel formalism for bayesian learning in the context of complex inference models is proposed. The method is based on the use of the stationary Fokker-Planck (SFP) approach to sample from the posterior density. Stationary Fokker-Planck sampling generalizes the Gibbs sampler algorithm for arbitrary and unknown conditional densities. By the SFP procedure, approximate analytical expressions for the conditionals and marginals of the posterior can be constructed. At each stage of SFP, the approximate conditionals are used to define a Gibbs sampling process, which is convergent to the full joint posterior. By the analytical marginals efficient learning methods in the context of artificial neural networks are outlined. Offline and incremental bayesian inference and maximum likelihood estimation from the posterior are performed in classification and regression examples. A comparison of SFP with other Monte Carlo strategies in the general problem of sampling from arbitrary densities is also presented. It is shown that SFP is able to jump large low-probability regions without the need of a careful tuning of any step-size parameter. In fact, the SFP method requires only a small set of meaningful parameters that can be selected following clear, problem-independent guidelines. The computation cost of SFP, measured in terms of loss function evaluations, grows linearly with the given model's dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.