Enzymes are used in baking to improve dough handling properties and the quality of baked products. Glucose oxidase (GO) is an enzyme with oxidazing effect due to the hydrogen peroxide released from its catalytic reaction. In this study, the macroscopic effect of increasing glucose oxidase concentrations on wheat dough rheology, fresh bread characteristics and its shelf life during storage was determined. A reinforcement or strengthening of wheat dough and an improvement of bread quality can be obtained with the addition of GO, although inverse effects were obtained when excessive enzyme levels were added. The analysis of the gluten proteins at molecular level by high performance capillary electrophoresis and at supramolecular level by cryoscanning electron microscopy revealed that the GO treatment modified gluten proteins (gliadins and glutenins) through the formation of disulfide and nondisulfide crosslinks. The high molecular weight glutenin subunits showed to be the most susceptible glutenin fraction to the oxidation action of GO. Excessive addition of GO produced an excessive crosslinking in the gluten network, responsible of the negative effect on the breadmaking properties.
The effect of different protein sources (soy flour, lupin flour, egg albumin, gelatin powder, protein‐rich beer yeast flour) on wheat dough functionality was tested by determining gluten index, texture properties, and thermomechanical parameters. Transglutaminase (TG) was also added to improve the dough functionality by forming cross‐links. The presence of protein sources had a significant effect on the gluten index, with the exception of lupin flour. Gelatin and the presence of TG resulted in significant single effects on the texture properties of the wheat‐protein dough. All the protein sources significantly modified the mixing characteristics of the dough or the thermal behavior. Capillary electrophoresis studies of the water‐soluble, salt‐soluble, and glutenin proteins indicated that interactions were mainly within proteins, thus homologous polymers. Scanning electron microscopy studies of the doughs made from blends of wheat and protein sources doughs supported the formation of heterologous structures in the wheat‐lupin blends. The combination of TG and lupin would be a promising method to be used on the treatment of insect‐damaged or weak flours, to increase the gluten strength.
Insect damaged wheat shows a disrupted protein structure due to the activity of the insect proteases that remain in the grain. Since transglutaminase (TG) catalyses the formation of covalent linkages between protein chains, it could be a good approach to restore damaged wheat properties. The use of increasing TG activity levels for ameliorating the effect of insect damage is described. The effect of TG on the viscoelastic behaviour and thermal stability of damaged wheat was investigated. The results indicate that TG treatment led to a more resistant and less extensible dough that behave more like a solid than a viscoelastic material. Conversely, the differential scanning calorimetry (DSC) revealed that the TG treatment brings closer the thermal stability of the damaged wheat to the one of undamaged wheat. However, although the use of TG as a way of restoring damaged wheat functionality is a good alternative, it is necessary to optimise the TG activity levels to be used in order to obtain an optimum response.
Gluten from wheat damaged by heteropterous insects loses its functionality after a short period of resting. In this study the properties of the gluten from damaged wheat are compared with that from sound wheat in order to understand the changes produced during incubation at 37 • C. The amounts of free thiol and amino groups were quantified, obtaining a marked increase of those groups during incubation of the damaged wheat. The thermal characterization of the damaged gluten showed a decrease in the denaturation temperature and a pronounced increase in the protein denaturation enthalpy after a short incubation, although the value of that enthalpy greatly dropped with a longer incubation period. The highmolecular-weight glutenin subunits (HMW-GS) were rapidly hydrolysed while the low-molecular-weight glutenin subunits (LMW-GS) showed a slower degradation. It seems that the HMW-GS backbone was first hydrolysed, leading to a protein structure with higher thermal stability but, as the hydrolysis proceeded, a deeper degradation of the structure yielded a protein structure with lower denaturation enthalpy. The loss of gluten functionality results from complex changes in the gluten structure at the first and second level of the protein organization structure.
In some wheat‐growing countries, considerable quantities of commercial wheat are rendered unusable in standard baking because of preharvest damage of the grain by protease‐injecting bugs. In the present study, we studied the ability of transglutaminase (TG) treatment of damaged wheat flour to return the functionality of the gluten network. To confirm the TG cross‐linking, the degree of protein hydrolysis, the amount of free thiol groups, and the electrophoresis properties of glutenin subunits were determined. The effectiveness of the TG treatment on insect‐damaged wheat was analyzed by measuring the dough mixing behavior and the gluten quality. A decrease in the degree of hydrolysis (or free amino groups), a reduction in thiol group concentration, and a decrease of extractable high molecular weight glutenin subunits (HMW‐GS) (measured by high‐performance capillary electrophoresis) confirmed the protein cross‐linking catalyzed by TG, the simultaneous formation of disulfide bonds by the proximity of the cross‐linked polypeptide chains, and the formation of aggregates of high molecular weight. The TG treatment of the damaged wheat flour led to a recovery of the consistograph parameters and gluten index value, and the covalent nature of the bonds ensured the stability of the protein changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.