This study compared the response of the wearable sensors tested against the industry-standard pressure transducers at blast overpressure (BOP) levels typically experienced in training. We systematically evaluated the effects of the sensor orientation with respect to the direction of the incident shock wave and demonstrated how the averaging methods affect the reported pressure values. The evaluated methods included averaging peak overpressure and impulse of all four sensors mounted on a helmet, taking the average of the three sensors, or isolating the incident pressure equivalent using two sensors. The experimental procedures were conducted in controlled laboratory conditions using the shock tube, and some of the findings were verified in field conditions with live fire charges during explosive breaching training. We used four different orientations (0˚, 90˚, 180˚, and 270˚) of the headform retrofitted with commonly fielded helmets (ACH, ECH, Ops-Core) with four B3 Blast Gauge sensors. We determined that averaging the peak overpressure values overestimates the actual dosage experienced by operators, which is caused by the reflected pressure contribution. This conclusion is valid despite the identified limitation of the B3 gauges that consistently underreport the peak reflected overpressure, compared to the industry-standard sensors. We also noted consistent overestimation of the impulse. These findings demonstrate that extreme caution should be exercised when interpreting occupational blast exposure results without knowing the orientation of the sensors. Pure numerical values without the geometrical, training-regime specific information such as the position of the sensors, the distance and orientation of the trainee to the source of the blast wave, and weapon system used will inevitably lead to erroneous estimation of the individual and cumulative blast overpressure (BOP) dosages. Considering that the 4 psi (~28 kPa) incident BOP is currently accepted as the threshold exposure safety value, a misinterpretation of exposure level may lead to an inaccurate estimation of BOP at the minimum standoff distance (MSD), or exclusion criteria.
This study demonstrates the orientation and the "shape factor" have pronounced effects on the development of the localized pressure fields inside of the helmet. We used anatomically accurate headform to evaluate four modern combat helmets under blast loading conditions in the shock tube. The Advanced Combat Helmet (ACH) is used to capture the effect of the orientation on pressure under the helmet. The three modern combat helmets: Enhanced Combat Helmet (ECH), Ops-Core, and Airframe, were tested in frontal orientation to determine the effect of helmet geometry. Using the unhelmeted headform data as a reference, we characterized pressure distribution inside each helmet and identified pressure focal points. The nature of these localized “hot spots” is different than the elevated pressure in the parietal region of the headform under the helmet widely recognized as the under-wash effect also observed in our tests. It is the first experimental study which indicates that the helmet presence increased the pressure experienced by the eyes and the forehead (glabella). Pressure fingerprinting using an array of sensors combined with the application of principle component analysis (PCA) helped elucidate the subtle differences between helmets.
This study demonstrates the orientation and the ‘shape factor’ have pronounced effects on the development of the localized pressure fields inside of the helmet. We used anatomically accurate headform to evaluate four modern combat helmets under blast loading conditions in the shock tube. The Advanced Combat Helmet (ACH) is used to capture the effect of the orientation on pressure under the helmet. The three modern combat helmets: ECH, Ops-Core, and Airframe, were tested in frontal orientation to determine the effect of helmet geometry. Using the unhelmeted headform data as a reference, we characterized pressure distribution inside each helmet and identified pressure focal points. The nature of these localized “hot spots” is different than the elevated pressure in the parietal region of the headform under the helmet widely recognized as the under-wash effect also observed in our tests. It is the first experimental study which indicates that the helmet presence increased the pressure experienced by the eyes (as evidenced by the pressure sensors in the H8 and H9 locations), and the forehead (denoted as H1 location). Pressure fingerprinting using an array of sensors combined with the application of principle component analysis (PCA) helped elucidate the subtle differences between helmets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.