Radiation induces apoptosis of crypt intestinal epithelial cells (IEC) through a pathway that is largely dependent on p53. However, exactly how p53 mediates IEC apoptosis is unclear. Studies in vitro suggest that one mechanism by which p53 mediates apoptosis is through its ability to transactivate members of the TNF receptor family of`Death Receptors'. Here, we examined the role of one of its member, TNF receptor type 1 (TNFR1), in an in vivo model of p53-dependent radiation-induced IEC apoptosis. We demonstrate that mice genetically engineered to be de®cient in TNF receptor type 1 (TNFR1
7/7) and mice injected with TNFR1-fusion chimeric protein (TNFR1-Fc; a competitive inhibitor of TNFR1) were partially protected (30 ± 40%) from p53-dependent radiation-induced IEC apoptosis. However, we found no evidence to support the possibility p53 transcriptionally regulates the expression of TNFR1 nor increases the susceptibility of IEC to TNF-mediated apoptosis. Interestingly, we found that injection of TNF readily induced IEC apoptosis and that radiation induced a p53-dependent increase in the intestinal level of TNF. Furthermore, injection of a neutralizing anti-TNF mAb reduced p53-dependent radiation-induced IEC apoptosis by approximately 60%. Overall, these results suggest that p53-dependent radiation-induced IEC apoptosis is mediated in part through ability of p53 to regulate TNF, which subsequently induces IEC apoptosis through TNFR1. Oncogene (2001) 20, 812 ± 818.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.