We propose a sliceable bandwidth variable transceiver (S-BVT) architecture suitable for metro/regional elastic networks and highly scalable data center (DC) applications. It adopts multicarrier modulation (MCM), either OFDM or DMT, and a cost-effective optoelectronic front-end. The high-capacity S-BVT is programmable, adaptive and reconfigurable by an SDN controller for efficient resource usage, enabling unique granularity, flexibility and grid adaptation, even in conventional fixed-grid networks. We experimentally demonstrate its multiple advanced functionalities in a four-node photonic mesh network. This includes SDN-enabled rate/distance adaptive multi-flow generation and routing/switching, slice-ability, flexibility and adaptability for the mitigation of spectrum fragmentation as well as for a soft migration towards the flexi-grid paradigm.
We propose the TelcoFog architecture as a novel, secure, highly distributed and ultradense fog computing infrastructure, which can be allocated at the extreme edge of a wired/wireless network for a Telecom Operator to provide multiple unified, cost-effective and new 5G services, such as Network Function Virtualization (NFV), Mobile Edge Computing (MEC), and services for third parties (e.g., smart cities, vertical industries or Internet of Things (IoT)).The distributed and programmable fog technologies that are proposed in TelcoFog are expected to strengthen the position of the Mobile Network and cloud markets. TelcoFog, by design, is capable of integrating an ecosystem for network operators willing to provide NFV, MEC and IoT services. TelcoFog key benefits are the dynamic deployment of new distributed low-latency services.The novel TelcoFog architecture consists of three main building blocks: a) a scalable TelcoFog node, that is seamlessly integrated in the Telecom infrastructure; b) a TelcoFog controller, focused on service assurance and based on service data modeling using YANG, that is integrated in the management and orchestration architecture of the Telecom operator; and c) TelcoFog services, which are able to run on top of the TelcoFog and Telecom infrastructure. The TelcoFog architecture is validated through a Proof of Concept for IoT services.
The fifth generation of mobile networks (5G) and the internet of Things (IoT) impose very stringent requirements to the optical transport networks. On the one hand, high flexibility, ultra-low latency and high capacity, in order to support the forecasted 1000x growth in mobile data traffic with latencies below millisecond. On the other hand, massive edge and core cloud infrastructure integrated with the transport network to dynamically deploy NFV, MEC, and IoT analytics. This paper presents ADRENALINTE testbed, an SDN/NFV packet/optical transport network and edge/core cloud platform for end-to-end 5G and IoT services.
We experimentally demonstrate multiple advanced functionalities of a cost-effective high-capacity sliceable-BVT using multicarrier technology. It is programmable, adaptive and reconfigurable by an SDN controller for efficient resource usage, enabling unique granularity, flexibility and grid adaptation, even in conventional fixed-grid networks
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.