en 311 docentes peruanos de educación básica (63.7% mujeres; M edad =46.75) de instituciones estatales. La estructura interna del AWS fue evaluada mediante el Análisis Factorial Confirmatorio (CFA) y el Modelamiento de Ecuaciones Estructurales Exploratorio (ESEM), y la confiabilidad del constructo fue estimada con el coeficiente ω. Los resultados del CFA y ESEM indicaron que la estructura de seis dimensiones no presenta evidencia suficiente debido a la presencia de cargas factoriales entre bajas y moderadas, además de la presencia de un factor de método asociado a ítems invertidos. La magnitud de la confiabilidad (ω) evidenció baja representatividad de algunos ítems respecto a las dimensiones que evalúa el AWS. Se discute los hallazgos y las implicancias sobre la utilidad de
Decision making requires a high performance in strategic processes. The process mining is responsible for generating knowledge and discover processes from event logs that are extracted from information systems, for finding errors, inconsistencies and vulnerabilities. To improve its performance, organizations are looking for a better process management approach, which as a first step requires precise modeling of these. In the health sector, an area largely unexplored by researchers in the field, such modeling is even more critical given the nature of this kind of organization. Obtaining these processes is not trivial in many cases, but it is a very complex task. This article aims to generate process models through the ProM tool for obtaining detailed, realistic and easily analyzable views, from records stored in information systems for health processes, particularly in a hospital (which are rich in information and generally tend to be overlooked).
Process Mining is a novel alternative to analyze the real processes, from extraction of knowledge of the event logs available in the information systems. The discovery is one type of process mining that allows obtaining process models, which can be observed visually eventualities in the processes modeled. Inductive Visual Miner is a plugin of ProM tool that supports the discovery and can generate animated process models inspired in a Business Process Modeling Notation. Actually, the knowledge needed to model hospital processes is acquired from empirical methods of researchers in the health institution. Hospital Information Systems possess an event log of processes activities, and it is not being exploited to detect eventualities in hospital processes. This research focused on the development of an Inductive Visual Miner customization, for the detection of eventualities in hospital processes. To develop the solution was used Java 1.6 as programming language, JBoss 4.2 as the application Server and Eclipse 3.4 as Integrated Development Environment. Java Enterprise Edition 5.0 platform was used during the whole process. The investigation allows to generate models of processes where can be observed eventualities of hospital processes.
En este artículo, se presenta el deterioro de un generador que sufrió un sobrecalentamiento de 150 °C. El esfuerzo térmico ocasionó la separación de la pintura conductora de la superficie del aislamiento, en algunas zonas del devanado, debido a que la pintura conductora no cumplió con los requerimientos de la Clase F. Esto generó cavidades internas debajo de la pintura conductora, las cuales ocasionaron pulsos esporádicos de descargas parciales de gran magnitud a bajos niveles de la tensión de prueba. Este mecanismo fue monitoreado a través del tiempo. Las descargas parciales fueron erosionando la pintura conductora, dejando zonas eléctricamente flotadas, en la superficie de las bobinas. Finalmente, las descargas parciales erosionaron el sistema aislante, ocasionando una falla a tierra en un período de doce años. El objetivo es aportar esta experiencia al acervo técnico relacionado con los mecanismos de deterioro del sistema aislante de los generadores de alta tensión.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.