We present a wearable passive UHF RFID tag based on a slotted patch antenna comprising only textile materials (e-textile, textile substrate, and conductive yearn). As a novel manufacturing approach, we realize the patch-to-ground and antenna-to-IC interfaces using only conductive thread and a sewing machine. We outline the electromagnetic optimization of the antenna for body-worn operation through simulations and present a performance comparison between the e-textile tag and a tag produced using regular electronics materials and methods. The measured results show that the textile tag achieves the electrical performance required in practical applications and that the slotted patch type antenna provides stable electromagnetic performance in different body-worn configurations.
We present embroidered antennas and interconnections in passive UHF RFID textile tags and test their strain reliability. Firstly, we fabricate tag antennas on two different stretchable fabric substrates by five different embroidery patterns and choose the most stretchable ones for testing. Next, the tag ICs are attached by sewing and gluing, and the tag reliability during repeated stretching cycles is evaluated through wireless measurements. Initially, the chosen tags achieve read ranges of 6–8 meters and can strain up to 140–150% of their original length. After 100 stretching cycles to 80% of their maximum strain, the read ranges of the tags with glued interconnections are similar to the initial values. In addition, also the read ranges of the tags with sewed interconnections are still more than 70%–85% of their initial values. However, some challenges with the reproducibility need to be solved next.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.