Milling is the surface machining process by removing material from the raw stock using revolving cutters. This process accounts for a major stake in most of the Original Equipment Manufacturing (OEM) industries. This paper discusses optimizing process parameters for machining the AA 2014 T 651 using a vertical milling machine with coated cutting tools. The process parameters such as cutting speed, depth of cut, and type of the cutting tool with all its levels are identified from the previous literature study and several trial experiments. The Taguchi L9 Orthogonal Array (OA) is used for the experimental order with the chosen input parameters. The commonly used cutting tools in the machining industry, such as High-Speed Steel (HSS) and its coated tools, are considered in this study. These tools are coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN) by Physical Vapor Deposition (PVD) technique. The output responses such as cutting forces along the three-axis are measured using a milling tool dynamometer for the corresponding input factors. The input process parameters are optimized by considering the output responses such as MRR, machining torque, and thrust force. Grey Taguchi-based Response Surface Methodology (GTRSM) is used for multiobjective multiresponse optimization problems to find the optimum input process parameter combination for the desired response. Polynomial regression equations are generated to understand the mathematical relation between the input factor and output responses as well as Grey Relational Grade (GRG) values. The optimum process parameter combination from the desirability analysis is the HSS tool coated with TiAlN at a cutting speed of 270 rpm and a depth of cut value of 0.2 mm.
Additive manufacturing (AM) is one the advanced process for building up a component layer by layer, with one layer of material was bonded to the previously laid layer using a 3D design data. In the field of medical science AM is very much useful in the development of Bone Scaffolds. The bone scaffold needs the good level of porosity for the cultivation of cells. In this work, an algorithm for a novel structure with the theme of flexible porosity was introduced. Scaffold models were developed using CATIA V5 for four different porosities. The novel structures made of Poly Amide (PA 2200) material were fabricated using a commercially available Selective Laser Sintering machine (SLS). The differences in scaffold theoretical and experimental porosities were investigated and the percentage of error was discussed.
Turning operation is one of the most commonly used machining processes. However, turning of high strength materials involves high heat generation which, in turn, results in undesirable characteristics such as increased tool wear, irregular chip formation, minor variations in physical properties etc. In order to overcome these, synthetic coolants are used and supplied in excess quantities (flood type). The handling and disposal of excess coolants are tedious and relatively expensive. In this proposed work, Water Soluble Cutting Oil suspended with nanoparticles (Graphene) is used in comparatively less quantities using Minimum quantity lubrication (MQL) method to improve the quality of machining. The testing was done on Turning operation of Monel K500 considering the various parameters such as the cutting speed, feed and depth of cut for obtaining a surface roughness of 0.462μm and cutting tool temperature of 55°C for MQL-GO (Graphene oxide) process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.