We present an optical compute engine with implementation of Deep CNNs. CNNs are designed in an organized and hierarchical manner and their convolutional layers, subsampling layers alternate with each other, thus the intricacy of the data per layer escalates as we traverse in the layered structure, which gives us more efficient results when dealing with complex data sets and computations. CNNs are realised in a distinctive way and vary from other neural networks in how their convolutional and subsampling layers are organised. DCNNs bring us very proficient results when it comes to image classification tasks. Recently, we have understood that generalization is more important when compared to the neural network's depth for more optimised image classification. Our feature extractors are learned in an unsupervised way, hence the results get more precise after every backpropagation and error correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.