Background: Over 200 million people worldwide are affected by thyroid proliferative diseases, including cancer, adenoma, and goiter, annually. The incidences of thyroid malignancies are three to four times higher in women, suggesting the possible involvement of estrogen. Based on this observed sex bias, we hypothesize that estrogen modulates the growth and metastatic propensity of thyroid cancer cells. Methods: In this study, two thyroid cell lines (Nthy-ori 3-1 and BCPAP) were evaluated for the presence of estrogen receptor (ER) by Western blot analysis and estrogen responsiveness by using a cell proliferation assay. In addition, the effect of estradiol (E 2 ) on modulation of metastatic phenotype was determined by using in vitro adhesion, migration, and invasion assays. Results: Thyroid cells expressed a functionally active ER-a and ER-b as evidenced by 50-150% enhancement of proliferation in the presence of E 2 . E 2 also enhanced adhesion, migration, and invasion of thyroid cells in an in vitro experimental model system that, based on our results, is modulated by b-catenin. Conclusion: Our data provide evidence that the higher incidence of thyroid cancer in women is potentially attributed to the presence of a functional ER that participates in cellular processes contributing to enhanced mitogenic, migratory, and invasive properties of thyroid cells. These findings will enable and foster the possible development of antiestrogenic therapy targeting invasion and migration, thus affecting metastatic propensity.
Endothelial progenitor cells are increasingly being studied in various diseases ranging from ischemia, diabetic retinopathy, and in cancer. The discovery that these cells can be mobilized from their bone marrow niche to sites of inflammation and tumor to induce neovasculogenesis has afforded a novel opportunity to understand the tissue microenvironment and specific cell-cell interactive pathways. This review provides a comprehensive up-to-date understanding of the physiological function and therapeutic utility of these cells. The emphasis is on the systemic factors that modulate their differentiation/mobilization and survival and presents the challenges of its potential therapeutic clinical utility as a diagnostic and prognostic reagent.
BackgroundAdjuvants serve as catalysts of the innate immune response by initiating a localized site of inflammation that is mitigated by the interactions between antigens and toll like receptor (TLR) proteins. Currently, the majority of vaccines are formulated with aluminum based adjuvants, which are associated with various side effects. In an effort to develop a new class of adjuvants, agonists of TLR proteins, such as bacterial products, would be natural candidates. Lipopolysaccharide (LPS), a major structural component of gram negative bacteria cell walls, induces the systemic inflammation observed in septic shock by interacting with TLR-4. The use of synthetic peptides of LPS or TLR-4 agonists, which mimic the interaction between TLR-4 and LPS, can potentially regulate cellular signal transduction pathways such that a localized inflammatory response is achieved similar to that generated by adjuvants.Methodology/Principal FindingsWe report the identification and activity of several peptides isolated using phage display combinatorial peptide technology, which functionally mimicked LPS. The activity of the LPS-TLR-4 interaction was assessed by NF-κB nuclear translocation analyses in HEK-BLUE™-4 cells, a cell culture model that expresses only TLR-4, and the murine macrophage cell line, RAW264.7. Furthermore, the LPS peptide mimics were capable of inducing inflammatory cytokine secretion from RAW264.7 cells. Lastly, ELISA analysis of serum from vaccinated BALB/c mice revealed that the LPS peptide mimics act as a functional adjuvant.Conclusions/SignificanceOur data demonstrate the identification of synthetic peptides that mimic LPS by interacting with TLR-4. This LPS mimotope-TLR-4 interaction will allow for the development and use of these peptides as a new class of adjuvants, namely TLR-4 agonists.
The tumor microenvironment (TME) contains high levels of the Wnt family of ligands, and aberrant Wnt-signaling occurs in many tumors. Past studies have been directed toward how the Wnt signaling cascade regulates cancer development, progression and metastasis. However, its effects on host antitumor immunity remain unknown. In this report, we show that Wnts in the TME condition dendritic cells (DCs) to a regulatory state and suppress host antitumor immunity. DC-specific deletion of Wnt co-receptors low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) in mice markedly delayed tumor growth and enhanced host antitumor immunity. Mechanistically, loss of LRP5/6-mediated signaling in DCs resulted in enhanced effector T cell differentiation and decreased regulatory T cell differentiation. This was due to increased production of pro-inflammatory cytokines and decreased production of IL-10, TGF-β1 and retinoic acid (RA). Likewise, pharmacological inhibition of the Wnts' interaction with its cognate co-receptors LRP5/6 and Frizzled (Fzd) receptors had similar effects on tumor growth and effector T cell responses. Moreover, blocking Wnt-signaling in DCs resulted in enhanced capture of tumor-associated antigens and efficient cross-priming of CD8 T cells. Hence, blocking the Wnt pathway represents a potential therapeutic to overcome tumor-mediated immune suppression and augment antitumor immunity.
Dietary lipids and their metabolites activate members of the peroxisome proliferative-activated receptor (PPAR) family of transcription factors and are critical for colonic health. The PPARα isoform plays a vital role in regulating inflammation in various disease settings, but its role in intestinal inflammation, commensal homeostasis and mucosal immunity in the gut are unclear. Here, we demonstrate that the PPARα pathway in innate immune cells orchestrates gut mucosal immunity and commensal homeostasis by regulating the expression of IL-22 and the anti-microbial peptides RegIIIβ, RegIIIγ and calprotectin. In addition, the PPARα pathway is critical for imparting regulatory phenotype in intestinal macrophages. PPARα deficiency in mice resulted in commensal dysbiosis in the gut resulting in microbiota-dependent increase in the expression of inflammatory cytokines and enhanced susceptibility to intestinal inflammation. Pharmacological activation of this pathway decreased the expression of inflammatory cytokines and ameliorated colonic inflammation. Together, these findings identify a new important innate immune function for the PPARα signaling pathway in regulating intestinal inflammation, mucosal immunity and commensal homeostasis. Thus, the manipulation of the PPARα pathway could provide novel opportunities for enhancing mucosal immunity and treating intestinal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.