Matrix metalloproteinase (MMP)-2 belongs to a family of zinc-dependent proteases which are best known for their ability to proteolyse extracellular matrix proteins throughout the body, including the cardiovascular system. Increased MMP-2 activity has been demonstrated in myocardial ischaemia and reperfusion injury and the progression to congestive heart failure, with most evidence to date for its role in cardiac remodelling. Recent evidence, however, shows that MMP-2 also co-localizes with and proteolyses specific protein targets within the cardiomyocyte to cause acute, reversible contractile dysfunction, challenging the conventional wisdom on the 'extracellular matrix only' actions of this enzyme. In this review, we discuss the recent upsurge in MMP-2 research with regards to its activation by non-proteolytic pathways in the setting of enhanced oxidative stress in the heart. We will focus on the consequences of intracellular actions of MMP-2 within the cardiomyocyte and its regulation at several levels including its expression, post-translational modifications, and regulation by endogenous tissue inhibitors of metalloproteinases, caveolin, and small molecule MMP inhibitors. MMP-2 is emerging as an important signalling protease implicated in the proteolytic regulation of various intracellular proteins in myocardial oxidative stress injury.
Matrix metalloproteinase-2 (MMP-2) is best understood for its biological actions outside the cell. However, MMP-2 also localizes to intracellular compartments and the cytosol where it has several substrates, including troponin I (TnI). Despite a growing list of cytosolic substrates, we currently do not know the mechanism(s) that give rise to the equilibrium between intracellular and secreted MMP-2 moieties. Therefore, we explored how cells achieve the unique distribution of this protease. Our data show that endogenous MMP-2 targets inefficiently to the endoplasmic reticulum (ER) and shows significant amounts in the cytosol. Transfection of canonical MMP-2 essentially reproduces this targeting pattern, suggesting it is the quality of the MMP-2 signal sequence that predominantly determines MMP-2 targeting. However, we also found that human cardiomyocytes express an MMP-2 splice variant which entirely lacks the signal sequence. Like the fraction of ER-excluded, full-length MMP-2, this variant MMP-2 is restricted to the cytosol and specifically enhances TnI cleavage upon hypoxia-reoxygenation injury in cardiomyocytes. Together, our findings describe for the first time a set of mechanisms that cells utilize to equilibrate MMP-2 both in the extracellular milieu and intracellular, cytosolic locations. Our results also suggest approaches to specifically investigate the overlooked intracellular biology of MMP-2.
Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC 50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.
GSK-3beta may be a target of MMP-2 and its cleavage by MMP-2 enhances its kinase activity. MMP-2 may cleave off the N-terminal of GSK-3beta where the inhibitory phosphorylation of serine-9 occurs. MMP-2-mediated augmentation of GSK-3beta kinase activity may contribute to cardiac injury resulting from enhanced oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.