Purpose Concrete is a building material widely used for the infrastructural development. Cement is the binding material used for the development of concrete. It is the primary cause of CO2 emission globally. The purpose of this study is to develop sustainable concrete material to satisfy the present need of construction sector. Geopolymer concrete (GPC) is a sustainable concrete developed without the use of cement. Therefore, investigations are being conducted to replace the cement by 100% with high calcium fly ash (FA) as binding material. Design/methodology/approach High calcium FA is used as cementitious binder, sodium hydroxide (NaOH) and sodium silicates (Na2SiO3) are used as alkaline liquids for developing the GPC. Mix proportions with different NaOH molarities of 4, 6, 8 and 10 M are considered to attain the appropriate mix. The method of curing adopted is ambient and oven curing. Workability, compressive strength and microstructure characteristics of GPC are analysed and presented. Findings An increase of NaOH in the mix decreases the workability. Compressive strength of 29 MPa is obtained for Mix-I with 8 M under ambient curing. A polynomial relationship is obtained to predict the compressive strength of GPC. Scanning electron microscope analysis is used to confirm the geo-polymerisation process in the microstructure of concrete. Originality/value This research work focuses on finding some alternative cementitious material for concrete that can replace ordinary portland cement (OPC) to overcome the CO2 emission owing to the utilisation of cement in the construction industry. An attempt has been made to use the waste material (high calcium FA) from thermal power plant for the production of GPC. GPC concrete is the novel building material and alternative to conventional concrete. It is the ecofriendly product contributing towards the improvement of the circular economy in the construction industry. There are several factors that affect the property of GPC such as type of binder material, molarity of activator solution and curing condition. The novelty of this work lies in the approach of using locally available high calcium FA along with manufactured sand for the development of GPC. As this approach is rarely investigated, to prove the attainment of compressive strength of GPC with high calcium FA, an attempt has been made during the present investigation. Other influencing parameter which affects the strength gain has also been analysed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.