An effective recipe for building seq2seq, nonautoregressive, task-oriented parsers to map utterances to semantic frames proceeds in three steps: encoding an utterance x, predicting a frame's length |y|, and decoding a |y|sized frame with utterance and ontology tokens. Though empirically strong, these models are typically bottlenecked by length prediction, as even small inaccuracies change the syntactic and semantic characteristics of resulting frames. In our work, we propose span pointer networks, non-autoregressive parsers which shift the decoding task from text generation to span prediction; that is, when imputing utterance spans into frame slots, our model produces endpoints (e.g., [i, j]) as opposed to text (e.g., "6pm"). This natural quantization of the output space also provides consistency in the length prediction task, allowing our length predictor to be responsible for frame syntax and the decoder for frame syntax, creating a coarse-to-fine model. We evaluate our approach on several task-oriented semantic parsing datasets. Notably, we bridge the quality gap between non-autogressive and autoregressive parsers, achieving 87 EM on TOPv2 (Chen et al., 2020). Furthermore, due to our more consistent gold frames, we show strong improvements in model generalization in both cross-domain and cross-lingual transfer in low-resource settings. Finally, due to our diminished output vocabulary, we observe 70% reduction in latency and 83% in memory at beam size 5 compared to prior nonautoregressive parsers.
Semantic parsing using sequence-to-sequence models allows parsing of deeper representations compared to traditional word tagging based models.In spite of these advantages, widespread adoption of these models for real-time conversational use cases has been stymied by higher compute requirements and thus higher latency. In this work, we propose a non-autoregressive approach to predict semantic parse trees with an efficient seq2seq model architecture.By combining nonautoregressive prediction with convolutional neural networks, we achieve significant latency gains and parameter size reduction compared to traditional RNN models. Our novel architecture achieves up to an 81% reduction in latency on TOP dataset and retains competitive performance to non-pretrained models on three different semantic parsing datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.