Although the problem of automatic video summarization has recently received a lot of a ention, the problem of creating a video summary that also highlights elements relevant to a search query has been less studied. We address this problem by posing queryrelevant summarization as a video frame subset selection problem, which lets us optimise for summaries which are simultaneously diverse, representative of the entire video, and relevant to a text query. We quantify relevance by measuring the distance between frames and queries in a common textual-visual semantic embedding space induced by a neural network. In addition, we extend the model to capture query-independent properties, such as frame quality. We compare our method against previous state of the art on textual-visual embeddings for thumbnail selection and show that our model outperforms them on relevance prediction. Furthermore, we introduce a new dataset, annotated with diversity and query-speci c relevance labels. On this dataset, we train and test our complete model for video summarization and show that it outperforms standard baselines such as Maximal Marginal Relevance.
Humans can robustly recognize and localize objects by integrating visual and auditory cues. While machines are able to do the same now with images, less work has been done with sounds. This work develops an approach for dense semantic labelling of sound-making objects, purely based on binaural sounds. We propose a novel sensor setup and record a new audio-visual dataset of street scenes with eight professional binaural microphones and a 360 • camera. The co-existence of visual and audio cues is leveraged for supervision transfer. In particular, we employ a cross-modal distillation framework that consists of a vision 'teacher' method and a sound 'student' method -the student method is trained to generate the same results as the teacher method. This way, the auditory system can be trained without using human annotations. We also propose two auxiliary tasks namely, a) a novel task on Spatial Sound Super-resolution to increase the spatial resolution of sounds, and b) dense depth prediction of the scene. We then formulate the three tasks into one end-to-end trainable multi-tasking network aiming to boost the overall performance. Experimental results on the dataset show that 1) our method achieves good results for all the three tasks; and 2) the three tasks are mutually beneficial -training them together achieves the best performance and 3) the number and the orientations of microphones are both important. The data and code will be released on the project page.
The role of robots in society keeps expanding, bringing with it the necessity of interacting and communicating with humans. In order to keep such interaction intuitive, we provide automatic wayfinding based on verbal navigational instructions. Our first contribution is the creation of a large-scale dataset with verbal navigation instructions. To this end, we have developed an interactive visual navigation environment based on Google Street View; we further design an annotation method to highlight mined anchor landmarks and local directions between them in order to help annotators formulate typical, human references to those. The annotation task was crowdsourced on the AMT platform, to construct a new Talk2Nav dataset with 10, 714 routes. Our second contribution is a new learning method. Inspired by spatial cognition research on the mental conceptualization of navigational instructions, we introduce a soft dual attention mechanism defined over the segmented language instructions to jointly extract two partial instructions—one for matching the next upcoming visual landmark and the other for matching the local directions to the next landmark. On the similar lines, we also introduce spatial memory scheme to encode the local directional transitions. Our work takes advantage of the advance in two lines of research: mental formalization of verbal navigational instructions and training neural network agents for automatic way finding. Extensive experiments show that our method significantly outperforms previous navigation methods. For demo video, dataset and code, please refer to our project page.
Object referring has important applications, especially for human-machine interaction. While having received great attention, the task is mainly attacked with written language (text) as input rather than spoken language (speech), which is more natural. This paper investigates Object Referring with Spoken Language (ORSpoken) by presenting two datasets and one novel approach. Objects are annotated with their locations in images, text descriptions and speech descriptions. This makes the datasets ideal for multi-modality learning. The approach is developed by carefully taking down ORSpoken problem into three sub-problems and introducing taskspecific vision-language interactions at the corresponding levels. Experiments show that our method outperforms competing methods consistently and significantly. The approach is also evaluated in the presence of audio noise, showing the efficacy of the proposed vision-language interaction methods in counteracting background noise.
We investigate the problem of object referring (OR) i.e. to localize a target object in a visual scene coming with a language description. Humans perceive the world more as continued video snippets than as static images, and describe objects not only by their appearance, but also by their spatio-temporal context and motion features. Humans also gaze at the object when they issue a referring expression. Existing works for OR mostly focus on static images only, which fall short in providing many such cues. This paper addresses OR in videos with language and human gaze. To that end, we present a new video dataset for OR, with 30, 000 objects over 5, 000 stereo video sequences annotated for their descriptions and gaze. We further propose a novel network model for OR in videos, by integrating appearance, motion, gaze, and spatio-temporal context into one network. Experimental results show that our method effectively utilizes motion cues, human gaze, and spatio-temporal context. Our method outperforms previous OR methods. For dataset and code, please refer https: //people.ee.ethz.ch/˜arunv/ORGaze.html.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.