An elegant platform to explore frustrated magnetism is the kagome spin lattice. In this work, clinoatacamite, a naturally occurring S = 1/2 kagome-like antiferromagnetic insulator, is synthesized in water at ambient pressure for the first time from a cuprous chloride (CuCl) precursor whereby Cu(I) was spontaneously oxidized to Cu(II) in the form of clinoatacamite [Cu 2 (OH) 3 Cl] with a simultaneous reduction of graphene oxide (GO) to reduced graphene oxide (rGO) in one pot. A stable nanocomposite of phase-pure clinoatacamite nanocrystals embedded in the rGO matrix was isolated. The clinoatacamite−rGO nanocomposite was determined to be magnetically active with a markedly enhanced coercive field of ∼2500 Oe at 5 K as well as electronically active with a conductivity value of ∼200 S•m −1 at 300 K. Our results illustrate an avenue of combining exotic magnetic and electronic lattices without impeding their individual characteristics and synergistically generating a new class of magnetic semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.