Endothelial nitric oxide synthase-derived NO and its derivative, peroxynitrite (ONOO-), suppresses oxygen consumption by nitration of mitochondrial proteins after reperfusion. However, very few nitrated proteins are identified to date. In this paper, ischemia/reperfusion (I/R) injury was induced in mouse heart by ligation and release of the left anterior descending coronary artery. Western blotting showed that tyrosine nitration was higher in I/R hearts. Nitrated proteins were identified by capillary-liquid chromatography-nanospray tandem mass spectrometry. A total of 23 proteins were identified as being nitrated after I/R and 10 of them were from mitochondria. The nitrated mitochondrial proteins included 4 subunits from the oxidative phosphorylation system (the 24 and the 30 kDa subunits of complex I, the Rieske ISP of complex III, and the α subunit of ATP synthase), five enzymes in the matrix, and voltage-dependent anion channel. In purified complex I treated with ONOO-, 3-NT was identified locating at the residue of Y247 of the 30 kDa subunit and the residues of Y47, Y53 of the 49 kDa subunit. In conclusion, I/R induced protein nitration and mitochondrial proteins were the major targets. Selective nitration of proteins from the oxidative phosphorylation system at the beginning of reperfusion may contribute to the suppression of oxygen consumption.
Chlorophyll biosynthesis requires a metabolic dialog between the chloroplast envelope and thylakoids where biosynthetic activities are localized. Here, we report the ®rst plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase (MgP IX MT) sequence identi®ed in the Arabidopsis genome owing to its similarity with the Synechocystis sp. MgP IX MT gene. After expression in Escherichia coli, the recombinant Arabidopsis thaliana cDNA was shown to encode a protein having MgP IX MT activity. The full-length polypeptide exhibits a chloroplast transit peptide that is processed during import into the chloroplast. The mature protein contains two functional regions. The C-terminal part aligns with the Synechocystis full-length protein. The corresponding truncated region binds to Ado-met, as assayed by UV crosslinking, and is shown to harbor the MgP IX MT activity. Downstream of the cleaved transit peptide, the 40 N-terminal amino acids of the mature protein are very hydrophobic and enhance the association of the protein with the membrane. In A. thaliana and spinach, the MgP IX MT protein has a dual localization in chloroplast envelope membranes as well as in thylakoids. The protein is active in each membrane and has the same apparent size corresponding to the processed mature protein. The protein is very likely a monotopic membrane protein embedded within one lea¯et of the membrane as indicated by ionic and alkaline extraction of each membrane. The rationale for a dual localization of the protein in the chloroplast is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.