Organic solvents limit [2+2] cycloaddition-retroelectrocyclization (CA–RE) in biological fields. We examined the formation of 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs) through CA–RE reactions and their unusual reactivity to produce N-heterocyclic compounds when surfactant nature...
Fluoride (F–) is a unique analyte because when in small quantities, it is beneficial and harmful when in larger or negligible quantities, leaving it essential for dual-purpose detection and removal from a water sample to prevent fluoride-caused health risks. F– detection and removal using organic molecules and hybrid materials are extensively reported in the literature, but very few reports discuss dual-purpose detection and removal. Functional nanomaterials (FNM) based on nanoparticles, metal-organic frameworks, and carbon dots conjugated with fluorophore moiety are largely used for these purposes. Functional groups present on nanomaterial surfaces exhibited various types of interactions such as agglomeration, electrostatic, hydrogen bonding, ion exchange, coordination and π-π stacking interactions enabling dual-purpose detection and removal of F–. These materials offer unique properties such as tunable pore structure, size, and morphology coupled with large surface area and high thermal/chemical stability. Further, this perspective review discusses prospects for sustainable technologies in addition to describing the advantages and disadvantages of using FNM based on its optical properties as well as the removal efficiency. We believe this is the first account that summarizes the single FNM that can be used for both the selective detection of F– in aqueous media as well as its efficient removal.
Organic solvents limit [2+2] cycloaddition-retroelectrocyclization (CA–RE) in biological fields. We examined the formation of 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs) through CA–RE reactions and their unusual reactivity to produce N-heterocyclic compounds when surfactant nature and concentrations were varied in the aqueous phase. An environment in which transient self-assembly (vesicles) was induced by substrate and surfactant molecules initiated new reactivity through H2O addition on the TCBD generating enol form of the intermediate which results in the formation of the 6,6-dicyano-heteropentafulvene (amidofulvene) compound while lamellar sheets at higher concentrations favored TCBD generation. Interestingly, the amidofulvene underwent a clean transformation to 6-membered-heterocycles via keto-enol tautomerism mediated by a polar aprotic solvent which resembles cardiotonic drugs (milrinone, amrinone), opening up a new avenue for drug discovery. Unlike organic solvent-mediated CA–RE reactions, the present nanoreactor-mediated approach enabled the selective production of TCBDs as well as new heterocycles using H2O as a green solvent. Besides the widely explored organic electronics/materials, we believe that this study would help overcome the long-standing limitation of CA–RE reaction applicability in biological fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.