Sintered copper nano particles are being considered as alternatives to solder and/or sintered silver in different applications. Like for the alternatives, interpretation of accelerated fatigue test results does however require modeling, typically involving prediction of stresses and strains vs. time and temperature based on constitutive relations. This poses a challenge as the inelastic deformation properties depend strongly on both the initial particles and details of the processing, i.e. unlike for solder general constitutive relations are not possible. The present work provides a mechanistic description of the early transient creep of relevance in cycling, including effects of sintering parameters and subsequent oxidation. Inelastic deformation is dominated by diffusion, rather than dislocation motion. Generalized constitutive relations are provided to the extent that quantitative modeling of a specific structure only requires the measurement of a single creep curve for that.
Magnesium, a light weight alloy used in multiple engineering industrial applications because of its good Physical, Chemical and Thermal characteristics. Magnesium composites play an important role in partial or entire replacement of numerous alloys.This current work deals with Nano silicon carbide of about 100nm was incorporated with AZ91magnesium alloy through liquid state composite processing. Two samples are made using 0% Nano SiC and 3% Nano SiC and are characterized through tensile test in Universal Testing Machine, Micro hardness test in Vickers hardness tester and Microstructure in Optical Microscopy. From the study it was clear that there is a peak increase in hardness of about 36% when compared to as casted AZ91.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.