To develop effective electrocatalytic splitting of acidic water, which is a key reaction for renewable energy conversion, the fundamental understanding of sluggish/destructive mechanism of the oxygen evolution reaction (OER) is essential. Through investigating atom/proton/electron transfers in the OER, the distinctive acid–base (AB) and direct‐coupling (DC) lattice oxygen mechanisms (LOMs) and adsorbates evolution mechanism (AEM) are elucidated, depending on the surface‐defect engineering condition. The designed catalysts are composed of a compressed metallic Ru‐core and oxidized Ru‐shell with Ni single atoms (SAs). The catalyst synthesized with hot acid treatment selectively follows AB‐LOM, exhibiting simultaneously enhanced activity and stability. It produces a current density of 10/100 mA cm−2 at a low overpotential of 184/229 mV and sustains water oxidation at a high current density of up to 20 mA cm−2 over ≈200 h in strongly acidic media.
The catalytic activity and selectivity can be improved for nitrogen fixation by using hollow sites and vacancy defects in 2D materials, while a new machine learning descriptor accelerates screening of efficient electrocatalysts.
Keggin-type polyoxometalate (POM) cluster based non-volatile memory has been investigated, and the molecular reconfiguration induced by the reduction process of POM molecules is proposed to initialize the resistive switching behavior.
MXenes have been widely used as substrates of hybrid electrocatalysts for water splitting due to their stability and metallic properties. However, tuning MXenes towards superb hydrogen/oxygen evolution reaction (HER/OER) activity has remained elusive. Using first‐principles calculations along with machine learning (ML) based descriptors, it is shown that late transition metal doping is able to significantly promote HER/OER activities. Both single‐atom adsorption onto a stable hollow site above the outer oxygen layer single‐atom catalyst 1 (SAC1), and single‐atom replacement at a sub‐surface metal layer (SAC2) are considered. An adsorbate evolving mechanism (AEM) is preferred for SAC1, while the increased M‐O bond covalency for SAC2 makes lattice oxygen mechanism (LOM) favored. It is found that a single Ni or Co atom embedded into MXenes provides a suitable number of electrons for optimal AEM and raises the O 2p band towards activated LOM. The stability and superb bifunctional catalytic capability of MXene combinations (Ni‐doped Sc3N2O2 and Ni‐doped Nb3C2O2) towards both HER and OER are demonstrated. The electronic and geometric descriptors used in the ML analysis work universally for classification of high‐performing HER/OER catalysts. This work provides a rational strategy for promoting bifunctional electrocatalytic activities based on low‐cost MXenes metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.