BackgroundWe describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing.ResultsOur phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented.ConclusionsOur comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.
Phylogeny estimation is difficult for closely related populations and species, especially if they have been exchanging genes. We present a hierarchical Bayesian, Markov-chain Monte Carlo method with a state space that includes all possible phylogenies in a full Isolation-with-Migration model framework. The method is based on a new type of genealogy augmentation called a “hidden genealogy” that enables efficient updating of the phylogeny. This is the first likelihood-based method to fully incorporate directional gene flow and genetic drift for estimation of a species or population phylogeny. Application to human hunter-gatherer populations from Africa revealed a clear phylogenetic history, with strong support for gene exchange with an unsampled ghost population, and relatively ancient divergence between a ghost population and modern human populations, consistent with human/archaic divergence. In contrast, a study of five chimpanzee populations reveals a clear phylogeny with several pairs of populations having exchanged DNA, but does not support a history with an unsampled ghost population.
New computational methods and next‐generation sequencing (NGS) approaches have enabled the use of thousands or hundreds of thousands of genetic markers to address previously intractable questions. The methods and massive marker sets present both new data analysis challenges and opportunities to visualize, understand, and apply population and conservation genomic data in novel ways. The large scale and complexity of NGS data also increases the expertise and effort required to thoroughly and thoughtfully analyze and interpret data. To aid in this endeavor, a recent workshop entitled “Population Genomic Data Analysis,” also known as “ConGen 2017,” was held at the University of Montana. The ConGen workshop brought 15 instructors together with knowledge in a wide range of topics including NGS data filtering, genome assembly, genomic monitoring of effective population size, migration modeling, detecting adaptive genomic variation, genomewide association analysis, inbreeding depression, and landscape genomics. Here, we summarize the major themes of the workshop and the important take‐home points that were offered to students throughout. We emphasize increasing participation by women in population and conservation genomics as a vital step for the advancement of science. Some important themes that emerged during the workshop included the need for data visualization and its importance in finding problematic data, the effects of data filtering choices on downstream population genomic analyses, the increasing availability of whole‐genome sequencing, and the new challenges it presents. Our goal here is to help motivate and educate a worldwide audience to improve population genomic data analysis and interpretation, and thereby advance the contribution of genomics to molecular ecology, evolutionary biology, and especially to the conservation of biodiversity.
IMa2 and related programs are used to study the divergence of closely related species and of populations within species. These methods are based on the sampling of genealogies using MCMC, and they can proceed quite slowly for larger data sets. We describe a parallel implementation, called IMa2p, that provides a nearly linear increase in genealogy sampling rate with the number of processors in use. IMa2p is written in OpenMPI and C++, and scales well for demographic analyses of a large number of loci and populations, which are difficult to study using the serial version of the program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.