S100A2, an EF hand calcium-binding protein, is a potential biomarker in several cancers and is also a TGF-β (transforming growth factor-β)-regulated gene in melanoma and lung cancer cells. However, the mechanism of S100A2 regulation by TGF-β and its significance in cancer progression remains largely unknown. In the present study we report the mechanism of S100A2 regulation by TGF-β and its possible role in TGF-β-mediated tumour promotion. Characterization of the S100A2 promoter revealed an AP-1 (activator protein-1) element at positions -1161 to -1151 as being the most critical factor for the TGF-β1 response. Chromatin immunoprecipitation and electrophoretic mobility-shift assays confirmed the functional binding of the AP-1 complex, predominantly JunB, to the S100A2 promoter in response to TGF-β1 in HaCaT keratinocytes. JunB overexpression markedly stimulated the S100A2 promoter which was blocked by the dominant-negative JunB and MEK1 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1] inhibitor, PD98059. Intriguingly, despite the presence of a putative SMAD-binding element, S100A2 regulation by TGF-β1 was found to be SMAD3 independent. Interestingly, p53 protein and TGF-β1 show synergistic regulation of the S100A2 promoter. Finally, knockdown of S100A2 expression compromised TGF-β1-induced cell migration and invasion of Hep3B cells. Together our findings highlight an important link between the TGF-β1-induced MAPK and p53 signalling pathways in the regulation of S100A2 expression and pro-tumorigenic actions.
Object
Insulin-like growth factor binding proteins (IGFBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma.
Methods
The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription–polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models.
Results
IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001–1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008–1.042) were significant predictors of shorter survival in patients with glioblastoma.
Conclusions
IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Killer immunoglobulin-like receptors (KIRs) are known to modulate natural killer (NK) and NK T-cell function by interacting with human leucocyte antigen (HLA) class I ligands on target cells. The aim of our study was to investigate the influence of KIR2D genes with their HLA-C ligands in susceptibility to type 1 diabetes. A total of 98 type 1 diabetes patients and 70 healthy subjects from Latvia were typed for KIR genes and HLA-C ligands using polymerase chain reaction-based genotyping. The HLA C1+/C2+ combination was positively, and C1-/C2+ combination was negatively, associated with type 1 diabetes. Stratification analysis of KIR/HLA-C ligand combinations showed 2DL2+/C1+, 2DL3+/C1+, and 2DS2+ /C1+ to be positively, and 2DL2-/C1- and 2DS2-/ C1- to be negatively, associated. The presence of 2DL2-HLA-C1 in the absence of 2DS1, 2DS2 confers maximum susceptibility. Absence of 2DL2 and HLA-C1 along with absence of 2DS1 and 2DS2 confer maximum protection. A hypothetical model of KIR/ligand combinations on immune responses and type 1 diabetes susceptibility is proposed. Our results suggest that a combination KIR2DL2- HLA-C1 plays a critical role in susceptibility or protection in Latvians against type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.