It has been more than two decades since the discovery of nanofluids-mixtures of common liquids and solid nanoparticles less than 100 nm in size. As a type of colloidal suspension, nanofluids are typically employed as heat transfer fluids due to their favorable thermal and fluid properties. There have been numerous numerical studies of nanofluids in recent years (more than 1000 in both 2016 and 2017, based on Scopus statistics). Due to the small size and large numbers of nanoparticles that interact with the surrounding fluid in nanofluid flows, it has been a major challenge to capture both the macro-scale and the nano-scale effects of these systems without incurring extraordinarily high computational costs.To help understand the state of the art in modeling nanofluids and to discuss the challenges that remain in this field, the present article reviews the latest developments in modeling of nanofluid flows and heat transfer with an emphasis on 3D simulations. In part I, a brief overview of nanofluids (fabrication, applications, and their achievable thermo-physical properties) will be presented first.Next, various forces that exist in particulate flows such as drag, lift (Magnus and Saffman), Brownian, thermophoretic, van der Waals, and electrostatic double layer forces and their significance in nanofluid flows are discussed. Afterwards, the main models used to calculate the thermophysical properties of nanofluids are reviewed. This will be followed with the description of the main physical models presented for nanofluid flows and heat transfer, from single-phase to Eulerian and Lagrangian two-phase models. In part II, various computational fluid dynamics (CFD) techniques will be presented. Next, the latest studies on 3D simulation of nanofluid flow in various regimes and configurations are reviewed. The present review is expected to be helpful for researchers working on numerical simulation of nanofluids and also for scholars who work on experimental aspects of nanofluids to understand the underlying physical phenomena occurring during their experiments.
This is a two-part paper describing inhaled nanoparticle (NP) transport and deposition in a model of a human respiratory tract (Part I) as well as NP-mass transfer across barriers into systemic regions (Part II). Specifically, combining high-resolution computer simulation results of inhaled NP deposition in the human airways (Part I) with a multicompartmental model for NP-mass transfer (Part II) allows for the prediction of temporal NP accumulation in the blood and lymphatic systems as well as in organs. An understanding of nanoparticle transport and deposition in human respiratory airways is of great importance, as exposure to nanomaterial has been found to cause serious lung diseases, while the use of nanodrugs may have superior therapeutic effects. In Part I, the fluid-particle dynamics of a dilute NP suspension was simulated for the entire respiratory tract, assuming steady inhalation and planar airways. Thus, a realistic airway configuration was considered from nose/mouth to generation 3, and then an idealized triple-bifurcation unit was repeated in series and parallel to cover the remaining generations. Using the current model, the deposition of NPs in distinct regions of the lung, namely extrathoracic, bronchial, bronchiolar, and alveolar, was calculated. The region-specific NP-deposition results for the human lung model were used in Part II to determine the multicompartmental model parameters from experimental retention and clearance data in human lungs. The quantitative, experimentally validated results are useful in diverse fields, such as toxicology for exposure-risk analysis of ubiquitous nanomaterial as well as in pharmacology for nanodrug development and targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.