With a 3-fold increase in the number of cancer survivors noted since the 1970s, there are now over 28 million cancer survivors worldwide. Accordingly, there is a heightened awareness of long-term toxicities and the impact on quality of life following treatment in cancer survivors. This review will address the increasing importance and challenge of chemotherapy-induced neurotoxicity, with a focus on neuropathy associated with the treatment of breast cancer, colorectal cancer, testicular cancer, and hematological cancers. An overview of the diagnosis, symptomatology, and pathophysiology of chemotherapy-induced peripheral neuropathy will be provided, with a critical analysis of assessment strategies, neuroprotective approaches, and potential treatments. The review will concentrate on neuropathy associated with taxanes, platinum compounds, vinca alkaloids, thalidomide, and bortezomib, providing clinical information specific to these chemotherapies.
Administration of oxaliplatin, a platinum-based chemotherapy used extensively in the treatment of colorectal cancer, is complicated by prominent dose-limiting neurotoxicity. Acute neurotoxicity develops following oxaliplatin infusion and resolves within days, while chronic neuropathy develops progressively with higher cumulative doses. To investigate the pathophysiology of oxaliplatin-induced neurotoxicity and neuropathy, clinical grading scales, nerve conduction studies and a total of 905 axonal excitability studies were undertaken in a cohort of 58 consecutive oxaliplatin-treated patients. Acutely following individual oxaliplatin infusions, significant changes were evident in both sensory and motor axons in recovery cycle parameters (P < 0.05), consistent with the development of a functional channelopathy of axonal sodium channels. Longitudinally across treatment (cumulative oxaliplatin dose 776 +/- 46 mg/m(2)), progressive abnormalities developed in sensory axons (refractoriness P < or = 0.001; superexcitability P < 0.001; hyperpolarizing threshold electrotonus 90-100 ms P < or = 0.001), while motor axonal excitability remained unchanged (P > 0.05), consistent with the purely sensory symptoms of chronic oxaliplatin-induced neuropathy. Sensory abnormalities occurred prior to significant reduction in compound sensory amplitude and the development of neuropathy (P < 0.01). Sensory excitability abnormalities that developed during early treatment cycles (cumulative dose 294 +/- 16 mg/m(2) oxaliplatin; P < 0.05) were able to predict final clinical outcome on an individual patient basis in 80% of patients. As such, sensory axonal excitability techniques may provide a means to identify pre-clinical oxaliplatin-induced nerve dysfunction prior to the onset of chronic neuropathy. Furthermore, patients with severe neurotoxicity at treatment completion demonstrated greater excitability changes (P < 0.05) than those left with mild or moderate neurotoxicity, suggesting that assessment of sensory excitability parameters may provide a sensitive biomarker of severity for oxaliplatin-induced neurotoxicity.
The pathophysiology of oxaliplatin-induced neurotoxicity remains unclear, although in vitro studies suggest involvement of voltage-gated Na+ channels. In the present study, clinical assessment was combined with nerve conduction studies (NCS) and nerve excitability studies in 16 patients after completion of oxaliplatin therapy. Chronic neuropathic symptoms persisted in 50% of patients. NCS confirmed abnormalities in symptomatic patients: sensory potentials were significantly low, whereas motor studies remained essentially normal. At 12-month follow-up of symptomatic patients, positive sensory symptoms improved but NCS abnormalities persisted. Cumulative oxaliplatin dose was a predictor of neuropathy, and long-term effects appeared to be minimized by low single-infusion dosages. Nerve excitability measures in symptomatic patients established that axons were of high threshold. Refractoriness was significantly greater in patients (symptomatic group, 56.3 +/- 24.9%; entire patient group, 46.3 +/- 12.5%; controls, 27.1 +/- 1.9%; P < 0.05). Thus, although positive sensory symptoms of oxaliplatin-induced neuropathy improved, negative sensory symptoms and abnormalities of sensory nerve conduction persisted. Differences in nerve excitability measures, particularly refractoriness, support in vitro studies indicating involvement of voltage-gated transient Na+-channel dysfunction in the development of oxaliplatin-induced neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.