Several (6), which involved scoring the formation of lung metastases after i.v. injection of melanoma cells into immunodeficient mice (7). These studies showed that human melanoma cell lines expressing high levels of TF, which can initiate coagulation in murine as well as in human plasma, were strongly metastatic and that the metastatic potential of the cell lines could be inhibited by treatment with an anti-TF monoclonal antibody that blocks its procoagulant activity. The conclusion drawn from those results was that one or more products of the coagulation cascade mediate the metastatic effect of TF. In this report we have used a different approach to study the role of TF in promoting metastasis. Four matched sets of cloned human melanoma cell lines expressing either normal or mutant TF molecules were generated by retroviral-mediated transfections, and the metastatic potential of the transfected cells was tested in the SCID mouse model of melanoma metastasis (6
8205The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
Tissue factor (TF) is a transmembrane protein that binds factor VII/VIIa, thus activating the extrinsic blood coagulation pathway. Since this pathway appears to be involved in the formation of intravascular thrombi, the anti-rabbit TF monoclonal antibody, AP-1, was produced and tested as an antithrombotic agent in a rabbit model of recurrent intravascular thrombosis. In this model, a plastic constrictor is positioned around the injured rabbit carotid arteries, and flow is monitored with a Doppler flow probe. This produces cyclic flow variation (CFV) in the carotid artery, which is caused by recurrent formation and dislodgment of thrombi at the site of the stenosis. After monitoring CFV pattern for 30 minutes, AP-1 was infused intravenously into nine rabbits at doses of 0.05 to 1.5 mg/kg body weight, and a control monoclonal antibody that does not react with rabbit TF was infused into four additional rabbits. In all rabbits receiving AP-1, CFV was abolished, and a steady normal blood flow was restored, indicating that thrombus formation had been blocked by AP-1. By contrast, in all rabbits that received the control monoclonal antibody, CFV continued unaltered. There was no change in the partial thromboplastin time and ex vivo platelet aggregation to several different agonists after infusion of AP-1, indicating an absence of systemic effects on the coagulation process. We conclude that activation of the extrinsic coagulation pathway has a key role in triggering intravascular thrombosis and that an anti-TF monoclonal antibody is an effective antithrombotic agent that could have therapeutic potential for humans.
TF exposure and activation of the extrinsic coagulation pathway play an important role in prolonging lysis time and mediating reocclusion after thrombolysis in this model. AP-1, a monoclonal antibody against TF, might be suitable as adjunctive therapy to TPA.
There is considerable interest in understanding how cis-regulatory modifications drive morphological changes across species. Because developmental regulatory genes, including Hox genes, are remarkably conserved, their noncoding regulatory regions are likely sources for variations. Modifications of Hox cis-regulatory elements have potential to alter Hox gene expression and, hence, axial morphologies. In vertebrates, differences in the axial levels of Hox gene expression correlate with differences in the number and relative position of thoracic vertebrae. Variation in cis-regulatory elements of Hox genes can be identified by comparative sequence and reporter gene analyses in transgenic mouse embryos. Using these approaches, we show a remarkable divergence of the Hoxc8 early enhancers between mammals and fishes representing diverse axial morphologies. Extensive restructuring of the Hoxc8 early enhancer including nucleotide substitutions, inversion, and divergence result in distinct patterns of reporter gene expression along the embryonic axis. Our results provide an evolutionary perspective on how the enhancer elements are engineered and support the hypothesis that remodeling of Hox regulatory elements in different species has played a significant role in generating morphological diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.