SUMMARY Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here we demonstrate that the gut microbiota-initiated trimethylamine-N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme, flavin-containing monooxygenase 3 (FMO3), conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.
IL-6 has been shown to play a major role in collagen up-regulation process during cardiac hypertrophy, although the precise mechanism is still not known. In this study we have analyzed the mechanism by which IL-6 modulates cardiac hypertrophy. For the in vitro model, IL-6-treated cultured cardiac fibroblasts were used, whereas the in vivo cardiac hypertrophy model was generated by renal artery ligation in adult male Wistar rats (Rattus norvegicus). During induction of hypertrophy, increased phosphorylation of STAT1, STAT3, MAPK, and ERK proteins was observed both in vitro and in vivo. Treatment of fibroblasts with specific inhibitors for STAT1 (fludarabine, 50 M), STAT3 (S31-201, 10 M), p38 MAPK (SB203580, 10 M), and ERK1/2 (U0126, 10 M) resulted in down-regulation of IL-6-induced phosphorylation of specific proteins; however, only S31-201 and SB203580 inhibited collagen biosynthesis. In ligated rats in vivo, only STAT3 inhibitors resulted in significant decrease in collagen synthesis and hypertrophy markers such as atrial natriuretic factor and -myosin heavy chain. In addition, decreased heart weight to body weight ratio and improved cardiac function as measured by echocardiography was evident in animals treated with STAT3 inhibitor or siRNA. Compared with IL-6 neutralization, more pronounced down-regulation of collagen synthesis and regression of hypertrophy was observed with STAT3 inhibition, suggesting that STAT3 is the major downstream signaling molecule and a potential therapeutic target for cardiac hypertrophy.Cardiac fibrosis is considered to be a major player during hypertrophy, where excess synthesis and a disproportionate accumulation of extracellular matrix proteins in the myocardium leads to its stiffness and diastolic dysfunction, leading to heart failure (1-3). Fibrillar collagen 1 and collagen 3 are the most abundant extracellular matrix proteins in the myocardium that maintain myocardial structural integrity (4). Collagen biosynthesis process is mainly compartmentalized in cardiac fibroblasts with a continuous turnover of newly synthesized collagen and degradation of old existing collagen, which involves post-transcriptional as well as post translational events. A physiological balance exists between collagen synthesis and degradation that is necessary to maintain tissue integrity of the myocardium. Extracellular catalytic cleavage of collagen is mediated by matrix metalloproteinases (MMPs) 2 that are eventually regulated by their naturally occurring endogenous inhibitors, i.e. tissue inhibitors of metalloproteinases (TIMPs) (1, 5).The fine balance between MMPs and TIMPs plays a crucial role in regulation of cardiac collagen turnover (5, 6). Furthermore, lysyl oxidase (LOX) is also instrumental during collagen biogenesis that catalyzes lysine-derived cross-bridges between two or more lysine residues of nascent procollagen peptides during their maturation into collagen molecules (5, 7). Altered and deregulated expression of these factors has been demonstrated in failing myocardium (5).Involvem...
Cardiac hypertrophy leading to eventual heart failure is the most common cause of mortality throughout the world. The triggering mechanisms for cardiac hypertrophy are not clear but both apoptosis and cell proliferation have been reported in sections of failing hearts. In this study, we utilized both angiotensin II (AngII) treatment of cardiomyocytes and aortic ligation in rats (Rattus norvegicus, Wistar strain) for induction of hypertrophy to understand the cellular factors responsible for activation of apoptotic or anti-apoptotic pathway. Hypertrophy markers (ANF, β-MHC), apoptotic proteins (Bax, Bad, Fas, p53, caspase-3, PARP), and anti-apoptotic or cell proliferation marker proteins (Bcl2, NF-κB, Ki-67) were induced significantly during hypertrophy, both in vitro as well as in vivo. Co-localization of both active caspase-3 and Ki-67 was observed in hypertrophied myocytes. p53 and NF-κBp65 binding to co-activator p300 was also increased in AngII treated myocytes. Inhibition of p53 resulted in downregulation of apoptosis, NF-κB activation, and NF-κB-p300 binding; however, NF-κB inhibition did not inhibit apoptosis or p53-p300 binding. Blocking of either p53 or NF-κB by specific inhibitors resulted in decrease in cell proliferation and hypertrophy markers, suggesting that p53 initially binds to p300 and then this complex recruits NF-κB. Thus, these results indicate the crucial role of p53 in regulating both apoptotic and cell proliferation during hypertrophy.
Rotaviruses are the major cause of severe dehydrating gastroenteritis in children worldwide. In this study, we report a positive role of cellular chaperone Hsp90 during rotavirus infection. A highly specific Hsp90 inhibitor, 17-allylamono-demethoxygeldanamycin (17-AAG) was used to delineate the functional role of Hsp90. In MA104 cells treated with 17-AAG after viral adsorption, replication of simian (SA11) or human (KU) strains was attenuated as assessed by quantitating both plaque forming units and expression of viral genes. Phosphorylation of Akt and NFkappaB observed 2-4 hpi with SA11, was strongly inhibited in the presence of 17-AAG. Direct Hsp90-Akt interaction in virus infected cells was also reduced in the presence of 17-AAG. Anti-rotaviral effects of 17-AAG were due to inhibition of activation of Akt that was confirmed since, PI3K/Akt inhibitors attenuated rotavirus growth significantly. Thus, Hsp90 regulates rotavirus by modulating cellular signaling proteins. The results highlight the importance of cellular proteins during rotavirus infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.