Several attempts have been made at systematically mapping protein-protein interaction, or “interactome” networks. However, it remains difficult to assess the quality and coverage of existing datasets. We describe a framework that uses an empirically-based approach to rigorously dissect quality parameters of currently available human interactome maps. Our results indicate that high-throughput yeast two-hybrid (HT-Y2H) interactions for human are superior in precision to literature-curated interactions supported by only a single publication, suggesting that HT-Y2H is suitable to map a significant portion of the human interactome. We estimate that the human interactome contains ~130,000 binary interactions, most of which remain to be mapped. Similar to estimates of DNA sequence data quality and genome size early in the human genome project, estimates of protein interaction data quality and interactome size are critical to establish the magnitude of the task of comprehensive human interactome mapping and to illuminate a path towards this goal.
BackgroundMapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward.ResultsWe report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist).ConclusionsDIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.
Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in several expert curated databases. These databases are used by researchers interested in examining detailed information on particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple experimental PPI datasets. HIPPIE's scoring scheme has been optimized by human experts and a computer algorithm to reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified confidence level.
Cellular signal transduction is a complex process involving protein-protein interactions (PPIs) that transmit information. For example, signals from the plasma membrane may be transduced to transcription factors to regulate gene expression. To obtain a global view of cellular signaling and to predict potential signal modulators, we searched for protein interaction partners of more than 450 signaling-related proteins by means of automated yeast two-hybrid interaction mating. The resulting PPI network connected 1126 proteins through 2626 PPIs. After expansion of this interaction map with publicly available PPI data, we generated a directed network resembling the signal transduction flow between proteins with a naïve Bayesian classifier. We exploited information on the shortest PPI paths from membrane receptors to transcription factors to predict input and output relationships between interacting proteins. Integration of directed PPI with time-resolved protein phosphorylation data revealed network structures that dynamically conveyed information from the activated epidermal growth factor and extracellular signal-regulated kinase (EGF/ERK) signaling cascade to directly associated proteins and more distant proteins in the network. From the model network, we predicted 18 previously unknown modulators of EGF/ERK signaling, which we validated in mammalian cell-based assays. This generic experimental and computational approach provides a framework for elucidating causal connections between signaling proteins and facilitates the identification of proteins that modulate the flow of information in signaling networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.