Treatment planning is a trial and error process that determines optimal dwell times, dose distribution, and loading pattern for high dose rate brachytherapy. Planning systems offer a number of dose calculation methods to either normalize or optimize the radiation dose. Each method has its own characteristics for achieving therapeutic dose to mitigate cancer growth without harming contiguous normal tissues. Our aim is to propose the best suited method for planning interstitial brachytherapy. 40 cervical cancer patients were randomly selected and 5 planning methods were iterated. Graphical optimization was compared with implant geometry and dose point normalization/optimization techniques using dosimetrical and radiobiological plan quality indices retrospectively. Mean tumor control probability was similar in all the methods with no statistical significance. Mean normal tissue complication probability for bladder and rectum is 0.3252 and 0.3126 (P = 0.0001), respectively, in graphical optimized plans compared to other methods. There was no significant correlation found between Conformity Index and tumor control probability when the plans were ranked according to Pearson product moment method (r = −0.120). Graphical optimization can result in maximum sparing of normal tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.