HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1α) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAK(-/-) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.
Emerging epidemiological evidence reveals a link between lung disease and exposure to indoor pollutants such as perfluorinated compounds (PFCs). PFC exposure during critical developmental stages may increase asthma susceptibility. Thus, in a murine model, we tested the hypothesis that early life and continued exposure to two ubiquitous household PFCs, perfluorooctanoic acid (PFOA) and perflurooctanesulfonic acid (PFOS), can induce lung dysfunction that exacerbates allergen-induced airway hyperresponsiveness (AHR) and inflammation. Balb/c mice were exposed to PFOA or PFOS (4 mg/kg chow) from gestation day 2 to 12 wk of age by feeding pregnant and nursing dams, and weaned pups. Some pups were also sensitized and challenged with ovalbumin (OVA). We assessed lung function and inflammatory cell and cytokine expression in the lung and examined bronchial goblet cell number. PFOA, but not PFOS, without the OVA sensitization/challenge induced AHR concomitant with a 25-fold increase of lung macrophages. PFOA exposure did not affect OVA-induced lung inflammatory cell number. In contrast, PFOS exposure inhibited OVA-induced lung inflammation, decreasing total cell number in lung lavage by 68.7%. Interferon-γ mRNA in the lung was elevated in all PFC-exposed groups. Despite these effects, neither PFOA nor PFOS affected OVA-induced AHR. Our data do not reveal PFOA or PFOS exposure as a risk factor for more severe allergic asthma-like symptoms, but PFOA alone can induce airway inflammation and alter airway function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.