Autism spectrum disorder (ASD) is an umbrella term for a number of neurodevelopmental conditions with many heterogeneous behavioural indications. Recent medical imaging approaches use functional Magnetic Resonance Imaging (fMRI) for human recognition of the various neurological syndromes. However, these traditional techniques are time consuming and expensive. Thus, in this research, an optimization assisted deep learning technique, named Feedback Artificial Virus Optimization (FAVO)‐based deep residual network (DRN), is developed. FAVO‐based DRN is designed to incorporate the Feedback Artificial Tree (FAT) algorithm with Anti Corona Virus Optimization (ACVO). First, Region‐Of‐Interest extraction is carried out using thresholding techniques with nub region extraction completed using the proposed FAVO algorithm. ASD classification is then carried out using a DRN classifier. Evaluation of the proposal uses the ABIDE‐1 and ABIDE‐2 datasets. The developed FAVO algorithm attains better accuracy, sensitivity, and specificity of 0.9214, 0.9365, and 0.9142, respectively, by considering ABIDE‐2 dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.