Non-analyticity in co-moving momenta within the non-Gaussian bispectrum is a distinctive sign of on-shell particle production during inflation, presenting a unique opportunity for the “direct detection” of particles with masses as large as the inflationary Hubble scale (H). However, the strength of such non-analyticity ordinarily drops exponentially by a Boltzmann-like factor as masses exceed H. In this paper, we study an exception provided by a dimension-5 derivative coupling of the inflaton to heavy-particle currents, applying it specifically to the case of two real scalars. The operator has a “chemical potential” form, which harnesses the large kinetic energy scale of the inflaton, $$ {\overset{\cdot }{\phi}}_0^{1/2}\approx 60H $$ ϕ ⋅ 0 1 / 2 ≈ 60 H , to act as an efficient source of scalar particle production. Derivative couplings of inflaton ensure radiative stability of the slow-roll potential, which in turn maintains (approximate) scale-invariance of the inflationary correlations. We show that a signal not suffering Boltzmann suppression can be obtained in the bispectrum with strength fNL ∼ $$ \mathcal{O} $$ O (0.01–10) for an extended range of scalar masses $$ \lesssim {\overset{\cdot }{\phi}}_0^{1/2} $$ ≲ ϕ ⋅ 0 1 / 2 , potentially as high as 1015 GeV, within the sensitivity of upcoming LSS and more futuristic 21-cm experiments. The mechanism does not invoke any particular fine-tuning of parameters or breakdown of perturbation-theoretic control. The leading contribution appears at tree-level, which makes the calculation analytically tractable and removes the loop-suppression as compared to earlier chemical potential studies of non-zero spins. The steady particle production allows us to infer the effective mass of the heavy particles and the chemical potential from the variation in bispectrum oscillations as a function of co-moving momenta. Our analysis sets the stage for generalization to heavy bosons with non-zero spin.
We consider simultaneous explanations of the electron and muon $$g-2$$ g - 2 anomalies through a single $$Z'$$ Z ′ of a $$U(1)'$$ U ( 1 ) ′ extension to the Standard Model (SM). We first perform a model-independent analysis of the viable flavour-dependent $$Z'$$ Z ′ couplings to leptons, which are subject to various strict experimental constraints. We show that only a narrow region of parameter space with an MeV-scale $$Z'$$ Z ′ can account for the two anomalies. Following the conclusions of this analysis, we then explore the ability of different classes of $$Z'$$ Z ′ models to realise these couplings, including the SM$$+U(1)'$$ + U ( 1 ) ′ , the N-Higgs Doublet Model$$+U(1)'$$ + U ( 1 ) ′ , and a Froggatt–Nielsen style scenario. In each case, the necessary combination of couplings cannot be obtained, owing to additional relations between the $$Z'$$ Z ′ couplings to charged leptons and neutrinos induced by the gauge structure, and to the stringency of neutrino scattering bounds. Hence, we conclude that no $$U(1)'$$ U ( 1 ) ′ extension can resolve both anomalies unless other new fields are also introduced. While most of our study assumes the Caesium $$(g-2)_e$$ ( g - 2 ) e measurement, our findings in fact also hold in the case of the Rubidium measurement, despite the tension between the two.
A first order phase transition in the early universe can give an observable stochastic gravitational background (SGWB), which will necessarily have primordial anisotropies across the sky. In multi-field inflationary scenarios, these anisotropies may have a significant isocurvature component very different from adiabatic fluctuations, providing an alternate discovery channel for high energy physics at inflationary scales. Here, we consider classically oscillating heavy fields during inflation that can imprint distinctive scale-invariance-breaking features in the power spectrum of primordial anisotropies. While such features are highly constrained in the cosmic microwave background, we show that their amplitude can be observably large in isocurvature SGWB, despite both probing a similar period of inflation. Measuring SGWB multipoles at the required level, ℓ ∼ 𝒪(10-100), will be technologically challenging. However, we expect that early detection of a strong isotropic SGWB, and the guarantee of anisotropies, would spur development of next generation detectors with sufficient sensitivity, angular resolution, and foreground discrimination.
It is well-known that first-order phase transitions in the early universe can be a powerful source of observable stochastic gravitational wave backgrounds. Any such gravitational wave background must exhibit large-scale anisotropies at least as large as those seen in the CMB 10−5, providing a valuable new window onto the (inflationary) origins of primordial fluctuations. While significantly larger fractional anisotropies are possible (for example, in multi-field inflation) and would be easier to interpret, it has been argued that these can only be consistent with CMB bounds if the gravitational wave signal is correspondingly smaller. In this paper, we show that this argument, which relies on assuming radiation dominance of the very early universe, can be evaded if there is an era of early matter dominance of a certain robust type. This allows large gravitational wave anisotropies to be consistent with observable signals at proposed future gravitational wave detectors. Constraints from the CMB on large scales, as well as primordial black hole and mini-cluster formation on small scales, and secondary scalar-induced gravitational waves are all taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.