Production from the Halten Terrace hydrocarbon province (Mid-Norwegian shelf) is mainly from heterolithic siliciclastic successions as well as diagenetically altered sandstones. Eight hydrocarbon fields are currently in production, which produce c . 840 000 BBL oil equivalent per day, with several new fields expected to come on stream in the next decade. This paper is an introduction to a thematic set on the characterization and modelling of heterolithic reservoirs and focuses on the three main types of heterogeneity: (1) heterolithic facies, (2) faulting and (3) diagenesis. Challenges vary according to field setting: shallow (1–3 km burial depth), deep (3–5 km) or very deep (currently up to 5.6 km). Water depths vary from 200 m to 500 m. Heterolithic sedimentary packages are composed of shale or siltstone layers intercalated with clean, but often thin, sandstone layers of varying lateral extent. These were deposited in Lower Jurassic tide-influenced or tide-dominated deltaic and estuarine environments along the margin of a shallow seaway. Hydrocarbon traps are formed by faulted and rotated fault blocks created during rifting. Faulting of these heterolithic facies is a critical parameter for fluid flow, with fault transmissibility and fault position often difficult to determine. Complex patterns of diagenetic cementation are an additional aspect of heterogeneity in the deeply buried reservoirs, such as the Smørbukk and Kristin fields. However, grain coatings of chlorite, illite/chlorite and illite have prevented or hindered the development of quartz overgrowths and allowed the preservation of anomalously high porosity and permeability. Modelling and assessing the impact of these reservoir uncertainties has included development of novel tools and methods, leading to a much-improved level of understanding, better prediction of recoverable reserves and significantly increased recovery factors.
Three-dimensional geological modelling and reservoir simulations of an outcrop analogue to reservoirs of the Halten Terrace, offshore mid-Norway, are presented. The model of the outcrop incorporates (a) a detailed sedimentological understanding, (b) a set of stochastic realizations highly-constrained to the geological models and (c) streamline waterflood flow simulations assuming typical subsurface petrophysical properties from the Halten Terrace. Statistical analysis of simulation results has been used to show the importance of both the facies architecture and the spatial petrophysical model. The outcrop model has significantly improved the estimation of facies dimensions and architecture and gives a valuable insight into understanding petroleum reservoirs of the Halten Terrace.
Uncertainty analysis and reduction is a crucial part of stochastic reservoir modelling and fluid flow simulation studies. Outcrop analogue studies are often employed to define reservoir model parameters but the analysis of uncertainties associated with sedimentological information is often neglected. In order to define uncertainty inherent in outcrop data more accurately, this paper presents geometrical and dimensional data from individual point bars and braid bars, from part of the low net:gross outcropping Tortóla fluvial system (Spain) that has been subjected to a quantitative and qualitative assessment. Four types of primary outcrop uncertainties are discussed: (1) the definition of the conceptual depositional model; (2) the number of observations on sandstone body dimensions; (3) the accuracy and representativeness of observed three-dimensional (3D) sandstone body size data; and (4) sandstone body orientation. Uncertainties related to the depositional model are the most difficult to quantify but can be appreciated qualitatively if processes of deposition related to scales of time and the general lack of information are considered. Application of the N 0 measure is suggested to assess quantitatively whether a statistically sufficient number of dimensional observations is obtained to reduce uncertainty to an acceptable level. The third type of uncertainty is evaluated in a qualitative sense and determined by accurate facies analysis. The orientation of sandstone bodies is shown to influence spatial connectivity. As a result, an insufficient number or quality of observations may have important consequences for estimated connected volumes. This study will give improved estimations for reservoir modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.