Background: Large financial companies are perpetually creating and updating customer scoring techniques. From a risk management view, this research for the predictive accuracy of probability is of vital importance than the traditional binary result of classification, i.e., non-credible and credible customers. The customer's default payment in Taiwan is explored for the case study. Objective: The aim is to audit the comparison between the predictive accuracy of the probability of default with various techniques of statistics and machine learning. Method: In this paper, nine predictive models are compared from which the results of the six models are taken into consideration. Deep learning-based H2O, XGBoost, logistic regression, gradient boosting, naïve Bayes, logit model, and probit regression comparative analysis is performed. The software tools such as R and SAS (university edition) is employed for machine learning and statistical model evaluation. Results: Through the experimental study, we demonstrate that XGBoost performs better than other AI and ML algorithms. Conclusion: Machine learning approach such as XGBoost effectively used for credit scoring, among other data mining and statistical approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.