Despite significant development in distributed denial of service (DDoS) defense systems, the downtime caused by DDoS damages reputation, crushes end-user experience, and leads to considerable revenue loss. Volumetric DDoS attacks are the most common form of DDoS attack and are carried out by an army of infected IoT devices or by reflector servers, which increase attacks at massive scales. In this work, we propose a voting-based multimode framework to combat volumetric DDoS (VMFCVD) attacks. VMFCVD is based on a triad of fast detection mode (FDM), defensive fast detection mode (DFDM), and high accuracy mode (HAM) methods. FDM is designed to classify network traffic when the server is under attack. The highly dimensionally reduced dataset helps FDM accelerate detection speed. During our experiment, the dimension reduction for FDM was more than 97% while maintaining an accuracy of 99.9% in most cases. DFDM is an extended version of FDM that enhances malicious network traffic detection accuracy by tightening the detection technique. HAM focuses on detection accuracy, showing substantial improvement over FDM and DFDM. HAM activates when the server is stable. VMFCVD is extensively experimented on the latest benchmark DDoS and botnet datasets, namely the CICIDS2017 (BoT & DDoS), CSE-CIC-IDS2018 (BoT & DDoS), CICDDoS2019 (DNS, LDAP, SSDP & SYN), DoHBrw2020, NBaIoT2018 (Mirai), UNSW2018 BoTIoT, and UNSW NB15 datasets. The VMFCVD results show that it outperforms recent studies. VMFCVD performs exceptionally well when the server is under DDoS attack.
The ever-increasing number of multi-vector cyberattacks has become a concern for all levels of organizations. Attackers are infecting Internet-enabled devices and exploiting them to carry out attacks. These devices are unwittingly becoming part of carrying out cyberattacks. Many studies have proposed machine learning–based promising solutions to stamp out cyberattacks preemptively. We review the machine learning techniques and highlight some promising solutions in recent studies. This study provides the advantage of experimenting with the developed solutions on modern datasets. This survey aims to provide an insightful organization of current developments in cybersecurity datasets and give suggestions for further research. We identified the most frightful cyberattacks and suitable datasets having records related to the attack. This paper discusses modern datasets such as CICIDS2017, CSE-CIC-IDS-2018, CIC-DDoS2019, UNSW-NB15, UNSW-TonIOT, UNSW-BotIoT, DoHBrw2020, and ISCX-URL-2016, which include records of recent sophisticated cyberattacks. This paper will focus on these modern datasets, retrieve detailed knowledge, and experiment with the most commonly used machine learning algorithms. We identify datasets as a significant centric topic that can be addressed with innovative machine learning approaches and solutions to defend against cyberattacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.