The objective of this study was to compare the rolling resistance of four common manual wheelchair tires (two pneumatic and two airless soli d) and the solid tires used on a commercially available force-and moment-sensing wheel. Coast-down tests were performed with a wheelchair positioned on a two-drum dynamometer. Within each of three load conditions, tire type had a significant effect on rolling resistance (p < 0.001). The pneumatic tires had smaller rolling resistances and were less affected by load increases than the solid tires. Within the two tire types, higher air pressure or firm ness and lower profile tread corresponded to less rolling resistance. Wheelchair users, clinicians, and researchers must consider the effect of tire type on wheelchair ro lling resistance when selecting a manual wheelchair tire.
Background: Robotic exoskeleton (RE) based gait training involves repetitive task-oriented movements and weight shifts to promote functional recovery. To effectively understand the neuromuscular alterations occurring due to hemiplegia as well as due to the utilization of RE in acute stroke, there is a need for electromyography (EMG) techniques that not only quantify the intensity of muscle activations but also quantify and compare activation timings in different gait training environments.Purpose: To examine the applicability of a novel EMG analysis technique, Burst Duration Similarity Index (BDSI) during a single session of inpatient gait training in RE and during traditional overground gait training for individuals with acute stroke.Methods: Surface EMG was collected bilaterally with and without the RE device for five participants with acute stroke during the normalized gait cycle to measure lower limb muscle activations. EMG outcomes included integrated EMG (iEMG) calculated from the root-mean-square profiles, and a novel measure, BDSI derived from activation timing comparisons.Results: EMG data demonstrated volitional although varied levels of muscle activations on the affected and unaffected limbs, during gait with and without the RE. During the stance phase mean iEMG of the soleus (p = 0.019) and rectus femoris (RF) (p = 0.017) on the affected side significantly decreased with RE, as compared to without the RE. The differences in mean BDSI scores on the affected side with RE were significantly higher than without RE for the vastus lateralis (VL) (p = 0.010) and RF (p = 0.019).Conclusions: A traditional amplitude analysis (iEMG) and a novel timing analysis (BDSI) techniques were presented to assess the neuromuscular adaptations resulting in lower extremities muscles during RE assisted hemiplegic gait post acute stroke. The RE gait training environment allowed participants with hemiplegia post acute stroke to preserve their volitional neuromuscular activations during gait iEMG and BDSI analyses showed that the neuromuscular changes occurring in the RE environment were characterized by correctly timed amplitude and temporal adaptations. As a result of these adaptations, VL and RF on the affected side closely matched the activation patterns of healthy gait. Preliminary EMG data suggests that the RE provides an effective gait training environment for in acute stroke rehabilitation.
The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.
Surface electromyography (sEMG) data acquired during lower limb movements has the potential for investigating knee pathology. Nevertheless, a major challenge encountered with sEMG signals generated by lower limb movements is the intersubject variability, because the signals recorded from the leg or thigh muscles are contingent on the characteristics of a subject such as gait activity and muscle structure. In order to cope with this difficulty, we have designed a three-step classification scheme. First, the multichannel sEMG is decomposed into activities of the underlying sources by means of independent component analysis via entropy bound minimization. Next, a set of time-domain features, which would best discriminate various movements, are extracted from the source estimates. Finally, the feature selection is performed with the help of the Fisher score and a scree-plot-based statistical technique, prior to feeding the dimension-reduced features to the linear discriminant analysis. The investigation involves 11 healthy subjects and 11 individuals with knee pathology performing three different lower limb movements, namely, walking, sitting, and standing, which yielded an average classification accuracy of 96.1% and 86.2%, respectively. While the outcome of this study per se is very encouraging, with suitable improvement, the clinical application of such an sEMG-based pattern recognition system that distinguishes healthy and knee pathological subjects would be an attractive consequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.