Abstract-Cyclic mechanical strain produced by pulsatile blood flow regulates the orientation of endothelial cells lining blood vessels and influences critical processes such as angiogenesis. Mechanical stimulation of stretch-activated calcium channels is known to mediate this reorientation response; however, the molecular basis remains unknown. Here, we show that cyclically stretching capillary endothelial cells adherent to flexible extracellular matrix substrates activates mechanosensitive TRPV4 (transient receptor potential vanilloid 4) ion channels that, in turn, stimulate phosphatidylinositol 3-kinase-dependent activation and binding of additional 1 integrin receptors, which promotes cytoskeletal remodeling and cell reorientation. Inhibition of integrin activation using blocking antibodies and knock down of TRPV4 channels using specific small interfering RNA suppress strain-induced capillary cell reorientation. Thus, mechanical forces that physically deform extracellular matrix may guide capillary cell reorientation through a strain-dependent "integrin-to-integrin" signaling mechanism mediated by force-induced activation of mechanically gated TRPV4 ion channels on the cell surface. Key Words: mechanical strain Ⅲ integrin Ⅲ TRPV4 Ⅲ endothelial cell Ⅲ reorientation Ⅲ cytoskeleton M echanical forces regulate vascular growth and development by influencing endothelial cell growth, survival, differentiation and migration. 1,2 Local mechanical cues conveyed by extracellular matrix (ECM) attributable to cyclic deformation of blood vessels, hemodynamic forces, or cellgenerated traction forces are also potent inducers of directional capillary blood vessel growth and vascular remodeling in vitro and in vivo. [3][4][5][6][7][8][9][10] For example, the initial step in neovascularization involves reorientation of a subset of capillary endothelial (CE) cells that spread and migrate perpendicular to the main axis of the preexisting vessel toward the angiogenic stimulus 11 ; however, the molecular mechanism responsible for this CE cell reorientation response is unknown. Many cell types, including large vessel endothelial cells, realign perpendicular to the direction of the applied force when they experience cyclic stretching (mechanical strain). [12][13][14][15] In the case of macrovascular endothelium, this reorientation response can be prevented by treatment with chemical inhibitors of stretch-activated (SA) ion channels. 15 But neither the identity of these channels nor the mechanism by which they elicit cell reorientation is known.Endothelial cells express most members of the transient receptor potential (TRP) family of ion channels 16 -18 and TRP vanilloid (TRPV)4 has been reported to mediate flowinduced vasodilation in large vessel endothelium. 19 -22 Here, we show that calcium influx through TRPV4 channels stimulated by mechanically stretching CE cells through their integrin-extracellular matrix (ECM) adhesions promotes cell reorientation by activating phosphatidylinositol 3-kinase (PI3K), thereby stimulating activ...
Key Points Question Is tumor mutation burden (TMB) associated with improved outcomes of programmed cell death–1 (PD-1)/programmed death ligand–1 (PD-L1) inhibition across PD-L1 expression levels in non–small cell lung cancer (NSCLC)? Findings In this cohort study of 1552 patients with NSCLC, the group with high TMB had improved response rates and survival after receiving PD-1/PD-L1 inhibition therapy across PD-L1 expression subgroups compared with the group with low TMB. High TMB levels were associated with increased CD8-positive T-cell infiltration and distinct immune response gene expression signatures. Meaning These findings suggest that in NSCLC, a high number of nonsynonymous tumor mutations is associated with immune cell infiltration and inflammatory T-cell expression signatures, leading to increased sensitivity to PD-1/PD-L1 inhibition across PD-L1 expression subgroups.
MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.