We present Vega-Lite, a high-level grammar that enables rapid specification of interactive data visualizations. Vega-Lite combines a traditional grammar of graphics, providing visual encoding rules and a composition algebra for layered and multi-view displays, with a novel grammar of interaction. Users specify interactive semantics by composing selections. In Vega-Lite, a selection is an abstraction that defines input event processing, points of interest, and a predicate function for inclusion testing. Selections parameterize visual encodings by serving as input data, defining scale extents, or by driving conditional logic. The Vega-Lite compiler automatically synthesizes requisite data flow and event handling logic, which users can override for further customization. In contrast to existing reactive specifications, Vega-Lite selections decompose an interaction design into concise, enumerable semantic units. We evaluate Vega-Lite through a range of examples, demonstrating succinct specification of both customized interaction methods and common techniques such as panning, zooming, and linked selection.
We present Reactive Vega, a system architecture that provides the first robust and comprehensive treatment of declarative visual and interaction design for data visualization. Starting from a single declarative specification, Reactive Vega constructs a dataflow graph in which input data, scene graph elements, and interaction events are all treated as first-class streaming data sources. To support expressive interactive visualizations that may involve time-varying scalar, relational, or hierarchical data, Reactive Vega's dataflow graph can dynamically re-write itself at runtime by extending or pruning branches in a data-driven fashion. We discuss both compile- and run-time optimizations applied within Reactive Vega, and share the results of benchmark studies that indicate superior interactive performance to both D3 and the original, non-reactive Vega system.
Figure 1: The Lyra visualization design environment, here used to recreate William Playfair's classic chart comparing the price of wheat and wages in England. Lyra enables the design of custom visualizations without writing code.
AbstractWe present Lyra, an interactive environment for designing customized visualizations without writing code. Using drag-and-drop interactions, designers can bind data to the properties of graphical marks to author expressive visualization designs. Marks can be moved, rotated and resized using handles; relatively positioned using connectors; and parameterized by data fields using property drop zones. Lyra also provides a data pipeline interface for iterative, visual specification of data transformations and layout algorithms. Visualizations created with Lyra are represented as specifications in Vega, a declarative visualization grammar that enables sharing and reuse. We evaluate Lyra's expressivity and accessibility through diverse examples and studies with journalists and visualization designers. We find that Lyra enables users to rapidly develop customized visualizations, covering a design space comparable to existing programming-based tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.