In the face of the current Opioid crisis in America killing close to 800,000 people since 2004, we are proposing a novel approach to assist in at least attenuating these unwanted premature deaths. While we applaud the wonderful efforts of our governmental institutes and professional societies (NIDA, NIAAA, ASAM, ABAM ) in their extraordinary efforts in combating this continued dilemma, the current approach is failing, and other alternative approaches should at least be tested. These truths present a serious ethical dilemma to scientists, clinicians and counselors in the Reward Deficiency Syndrome (RDS) treatment community. It is important to realize that the current DSM-5 does not actually accurately display the natural brain reward process. The human brain has not been designed to carve out specific drugs like opioids, alcohol, nicotine, cocaine, benzodiazepines or cannabis and process addictions such as gambling as distinct endophenotypes. This is true in spite of natural ligands for cannabinoids, endorphins, or even benzodiazepines. The most accurate endophenotype is indeed reward dysfunction (e.g hypodopaminergic or hyperdopaminergic). With this mind, we are hereby proposing that the current Medication Assisted Treatment (i.e. ‘MAT’) expands to needed individuals as an initial “Band-Aid” to reduce harm avoidance, with the long–term goal of prophylaxis. So, to be clear, there may be other promising modalities other than MAT such as repetitive transcranial magnetic stimulation (rTMS), exercise and even new medications with positive allosteric modulators of GABA-A receptors, as well as the highly researched Genetic Addiction Risk Score (GARS) coupled with precision KB220Z. This will induce “dopamine homeostasis” to effectively rebalance and restore healthier brain function by promoting the cross talk between various brain regions (e.g. Nucleus accumbens, cingulate gyrus, hippocampus etc.) resulting in dopamine homeostasis. Our laudable goal is to not only save lives, but to redeem joy and improve the quality of life in the recovery community through scientifically sound natural non-addicting alternatives.
Substance abuse treatment undergoes various changes in the event of a natural disaster. These changes may increase challenges for successful treatment completion for vulnerable populations such as those with a COD. Results of this study demonstrate that discharges with a COD are less likely to complete treatment as compared to those with no COD disorder. Unmet treatment needs may also increase odds of criminalization and homelessness.
Prescriptions for Benzodiazepines (BZDs) have risen continually. According to national statistics, the combination of BZDs with opioids has increased since 1999. BZDs (sometimes called “benzos”) work to calm or sedate a person by raising the level of the inhibitory neurotransmitter GABA in the brain. In terms of neurochemistry, BZDs act at the GABAA receptors to inhibit excitatory neurons, reducing VTA glutaminergic drive to reduce dopamine release at the Nucleus accumbens. Benzodiazepine Use Disorder (BUD) is very difficult to treat, partly because BZDs are used to reduce anxiety which paradoxically induces hypodopaminergia. Considering this, we are proposing a paradigm shift. Instead of simply targeting chloride channel direct GABAA receptors for replacement or substitution therapy, we propose the induction of dopamine homeostasis. Our rationale is supported by the well-established notion that the root cause of drug and non-drug addictions (i.e. Reward Deficiency Syndrome [RDS]), at least in adults, involve dopaminergic dysfunction and heightened stress. This proposition involves coupling the Genetic Addiction Risk Score (GARS) with a subsequent polymorphic matched genetic customized Pro-Dopamine Regulator known as KB220ZPBM (Precision Behavioral Management). Induction of dopamine homeostasis will be clinically beneficial in attempts to combat BUD for at least three reasons: 1) During detoxification of alcoholism, the potential induction of dopamine regulation reduces the need for BZDs; 2) A major reason for BZD abuse is because people want to achieve stress reduction and subsequently, the potential induction of dopamine regulation acts as an anti-stress factor; and 3) BUD and OUD are known to reduce resting state functional connectivity, and as such, potential induction of dopamine regulation enhances resting state functional connectivity. Future randomized placebo-controlled studies will investigate this forward thinking proposed novel modality.
Treatment admissions stabilized following Hurricane Katrina; however, since 2009, they have begun to decline. Targeted exploration of factors affecting admission to treatment in New Orleans with populations such as the homeless, those with a psychiatric illness in addition to a substance abuse problem, and those referred by the criminal justice system is essential. The results of this study assist in identifying variations in substance abuse treatment characteristics for those admitted to treatment in New Orleans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.