This paper proposes IoT-based an enterprise health information system called IoTPulse to predict alcohol addiction providing real-time data using machine-learning in fog computing environment. We used data from 300 alcohol addicts from Punjab (India) as a case study to train machine-learning models. The performance of IoTPulse is compared against existing work using various parameters including accuracy, sensitivity, specificity and precision which shows improvement of 7%, 4%, 12% and 12% respectively. Finally, IoTPulse is validated in FogBus-based real fog environment using QoS parameters including latency, network bandwidth, energy and response time which improves performance by 19.56%, 18.36%, 19.53% and 21.56% respectively.
Since the end of 2019, computed tomography (CT) images have been used as an important substitute for the time‐consuming Reverse Transcriptase polymerase chain reaction (RT‐PCR) test; a new coronavirus 2019 (COVID‐19) disease has been detected and has quickly spread through many countries across the world. Medical imaging such as computed tomography provides great potential due to growing skepticism toward the sensitivity of RT‐PCR as a screening tool. For this purpose, automated image segmentation is highly desired for a clinical decision aid and disease monitoring. However, there is limited publicly accessible COVID‐19 image knowledge, leading to the overfitting of conventional approaches. To address this issue, the present paper focuses on data augmentation techniques to create synthetic data. Further, a framework has been proposed using WoT and traditional U‐Net with EfficientNet B0 to segment the COVID Radiopedia and Medseg datasets automatically. The framework achieves an
F
‐score of 0.96, which is best among state‐of‐the‐art methods. The performance of the proposed framework also computed using Sensitivity, Specificity, and Dice‐coefficient, achieves 84.5%, 93.9%, and 65.0%, respectively. Finally, the proposed work is validated using three quality of service (QoS) parameters such as server latency, response time, and network latency which improves the performance by 8%, 7%, and 10%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.