Graph models are fundamental in network theory. But normalization of weights are necessary to deal with large size networks like internet. Most of the research works available in the literature have been restricted to an algorithmic perspective alone. Not much have been studied theoretically on connectivity of normalized networks. Fuzzy graph theory answers to most of the problems in this area. Although the concept of connectivity in fuzzy graphs has been widely studied, one cannot find proper generalizations of connectivity parameters of unweighted graphs. Generalizations for some of the existing vertex and edge connectivity parameters in graphs are attempted in this article. New parameters are compared with the old ones and generalized values are calculated for some of the major classes like cycles and trees in fuzzy graphs. The existence of super fuzzy graphs with higher connectivity values are established for both old and new parameters. The new edge connectivity values for some wider classes of fuzzy graphs are also obtained. The generalizations bring substantial improvements in fuzzy graph clustering techniques and allow a smooth theoretical alignment. Apart from these, a new class of fuzzy graphs called generalized t-connected fuzzy graphs are studied. An algorithm for clustering the vertices of a fuzzy graph and an application related to human trafficking are also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.