<div><div><div><p>The synoptic-scale (3 - 7 days) variability is a dominant contributor to the Indian summer monsoon (ISM) seasonal precipitation. An accurate prediction of ISM precipitation by dynamical or statistical models remains a challenge. Here we show that the sea level pressure (SLP) can be used as a proxy to predict the active-break cycle as well as the genesis of low- pressure-systems (LPS), using a deep learning model, namely, convolutional long short-term memory (ConvLSTM) networks. The deep learning model is able to reliably predict the daily SLP anomalies over Central India and the Bay of Bengal at a lead time of 7 days. As the fluctuations in SLP drive the changes in the strength of the atmospheric circulation, the prediction of SLP anomalies is useful in predicting the intensity of ISM. It is demonstrated that the ConvLSTM possesses better prediction skill compared to a conventional numerical weather prediction model, indicating the usefulness of a physics guided deep learning model in medium range weather forecasting.</p></div></div></div>
<div><div><div><p>The synoptic-scale (3 - 7 days) variability is a dominant contributor to the Indian summer monsoon (ISM) seasonal precipitation. An accurate prediction of ISM precipitation by dynamical or statistical models remains a challenge. Here we show that the sea level pressure (SLP) can be used as a proxy to predict the active-break cycle as well as the genesis of low- pressure-systems (LPS), using a deep learning model, namely, convolutional long short-term memory (ConvLSTM) networks. The deep learning model is able to reliably predict the daily SLP anomalies over Central India and the Bay of Bengal at a lead time of 7 days. As the fluctuations in SLP drive the changes in the strength of the atmospheric circulation, the prediction of SLP anomalies is useful in predicting the intensity of ISM. It is demonstrated that the ConvLSTM possesses better prediction skill compared to a conventional numerical weather prediction model, indicating the usefulness of a physics guided deep learning model in medium range weather forecasting.</p></div></div></div>
CPU scheduling is the reason behind the performance of multiprocessing and in time-shared operating systems. Different scheduling criteria are used to evaluate Central Processing Unit Scheduling algorithms which are based on different properties of the system. Round Robin is known to be the most recurrent pre-emptive algorithm used in an environment where processes are allotted a unit of time and multiprocessing operating systems. In this paper, a reformed variation of the Round Robin algorithm has been introduced to minimise the completion time, turnaround time, waiting time and number of context switches that results in the better performance of the system. The proposed work consists of calculation of priority on the basis of the difference between time spent in ready upto the moment and arrival time of the process, to ease up the burden on the ready queue. We have also evaluated the performance of the proposed approach on different datasets and measured the different scheduling criteria
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.