Access to complete data in large scale networks is often infeasible. Therefore, the problem of missing data is a crucial and unavoidable issue in analysis and modeling of real-world social networks. However, most of the research on different aspects of social networks do not consider this limitation. One effective way to solve this problem is to recover the missing data as a pre-processing step. The present paper tries to infer the unobserved data from both diffusion network and network structure by learning a model from the partially observed data. We develop a probabilistic generative model called "DiffStru" to jointly discover the hidden links of network structure and the omitted diffusion activities. The interrelations among links of nodes and cascade processes are utilized in the proposed method via learning coupled low dimensional latent factors. In addition to inferring the unseen data, the learned latent factors may also help network classification problems such as community detection. Simulation results on synthetic and real-world datasets show the excellent performance of the proposed method in terms of link prediction and discovering the identity and infection time of invisible social behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.