Membrane remodeling mediated by heteropolymeric filaments composed of ESCRT-III subunits is an essential process that occurs at a variety of organelles to maintain cellular homeostasis. Members of the evolutionarily conserved Lgd/CC2D1 protein family have been suggested to regulate ESCRT-III polymer assembly, although their specific roles, particularly in vivo, remain unclear. Using the Caenorhabditis elegans early embryo as a model system, we show that Lgd/CC2D1 localizes to endosomal membranes, and its loss impairs endolysosomal cargo sorting and degradation. At the ultrastructural level, the absence of Lgd/CC2D1 results in the accumulation of enlarged endosomal compartments that contain a reduced number of intralumenal vesicles (ILVs). However, unlike aberrant endosome morphology caused by depletion of other ESCRT components, ILV size is only modestly altered in embryos lacking Lgd/CC2D1. Instead, loss of Lgd/CC2D1 impairs normal accumulation of ESCRT-III on endosomal membranes, likely slowing the kinetics of ILV formation. Together, our findings suggest a role for Lgd/CC2D1 in the recruitment and/or stable assembly of ESCRT-III subunits on endosomal membranes to facilitate efficient ILV biogenesis. [Media: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.