Radio-frequency identification (RFID) transponders are now widely used to track sediment in a variety of environments. A recent innovation placed the transponder inside of a rotating inner mechanism that is designed to minimize missed detections due to burial and shielding or 'signal collision' effects between tracers, while also allowing a rapid measurement of the burial depth of the particle. Here we test a developed protocol for burial depth measurement and deploy the 'Wobblestone' tracers in the field for the first time. Results show that new tracers can be reliably positioned in the horizontal plane (median error ± 0.03m) and that the burial depth can be accurately measured (~0.02m maximum error). The field study was characterized by high mobility and travel lengths, and~20% of the tracers were buried at depths up to 0.15m. A comparison of exponential distributions for travel length of surface deposited and buried tracers indicate that the buried tracers on average traveled farther and earlier in the flood event. Tracers that did not move were also buried at one site as a result of sediment transport from upstream. Overall the technique has great potential for characterizing vertical mixing and understanding this rarely considered control on sediment transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.