The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
This research investigates dealers' motivation to disclose their names when quoting on the NASDAQ over the years. NASDAQ enables dealers to quote limit orders either anonymously or with a feature that reveals their names. Results are consistent with dealers advertising by revealing their identities so as to develop and maintain their reputation for reliable pricing. Dealers strategically choose to reveal their identities when order flow is profitable. Post‐name disclosure analysis further suggests that named quotations are likely to be driven by informational considerations. This research contributes to our understanding of the use of non‐anonymity in electronic trading.
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractWe develop a new approach to reflect the behavior of algorithmic traders. Specifically, we provide an analytical and tractable way to infer patterns of quote volatility and price momentum consistent with different types of strategies employed by algorithmic traders, and we propose two ratios to quantify these patterns. Quote volatility ratio is based on the rate of oscillation of the best ask and best bid quotes over an extremely short period of time; whereas price momentum ratio is based on identifying patterns of rapid upward or downward movement in prices. The two ratios are evaluated across several asset classes.We further run a two-stage Artificial Neural Network experiment on the quote volatility ratio; the first stage is used to detect the quote volatility patterns resulting from algorithmic activity, while the second is used to validate the quality of signal detection provided by our measure.
We experimentally consider a dynamic multi-period Cournot duopoly with a simultaneous option to manage financial risk and a real option to delay supply. The first option allows players to manage risk before uncertainty is realized, while the second allows managing risk after realization. In our setting, firms face a strategic dilemma: They must weigh the advantages of dealing with risk exposure against the disadvantages of higher competition. In theory, firms make strategic use of the hedging component, enhancing competition. Our experimental results support this theory, suggesting that hedging increases competition and negates duopoly profits even in a simultaneous setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.