The accumulation of intracellular triacylglycerol (TG) is highly correlated with muscle insulin resistance. However, it is controversial whether the accumulation of TG is the result of increased fatty acid supply, decreased fatty acid oxidation, or both. Because abnormal fatty acid metabolism is a key contributor to the pathogenesis of diabetes-related cardiovascular dysfunction, we examined fatty acid and glucose metabolism in hearts of insulin-resistant JCR:LA-cp rats. Isolated working hearts from insulin-resistant rats had glycolytic rates that were reduced to 50% of lean control levels (P < 0.05). Cardiac TG content was increased by 50% (P < 0.05) in the insulin-resistant rats, but palmitate oxidation rates remained similar between the insulin-resistant and lean control rats. However, plasma fatty acids and TG levels, as well as cardiac fatty acid-binding protein (FABP) expression, were significantly increased in the insulin-resistant rats. AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac fatty acid and glucose metabolism. When activated, AMPK increases fatty acid oxidation by inhibiting acetyl-CoA carboxylase (ACC) and reducing malonyl-CoA levels, and it decreases TG content by inhibiting glycerol-3-phosphate acyltransferase (GPAT), the rate-limiting step in TG synthesis. The activation of AMPK also stimulates cardiac glucose uptake and glycolysis. We thus investigated whether a decrease in AMPK activity was responsible for the reduced cardiac glycolysis and increased TG content in the insulin-resistant rats. However, we found no significant difference in AMPK activity. We also found no significant difference in various established downstream targets of AMPK: ACC activity, malonyl-CoA levels, carnitine palmitoyltransferase I activity, or GPAT activity. We conclude that hearts from insulin-resistant JCR:LA-cp rats accumulate substantial TG as a result of increased fatty acid supply rather than from reduced fatty acid oxidation. Furthermore, the accumulation of cardiac TG is associated with a reduction in insulin-stimulated glucose metabolism.
ObjectiveThe hexosamine biosynthesis pathway (HBP) flux and protein O-linked N-acetyl-glucosamine (O-GlcNAc) levels have been implicated in mediating the adverse effects of diabetes in the cardiovascular system. Activation of these pathways with glucosamine has been shown to mimic some of the diabetes-induced functional and structural changes in the heart; however, the effect on cardiac metabolism is not known. Therefore, the primary goal of this study was to determine the effects of glucosamine on cardiac substrate utilization.MethodsIsolated rat hearts were perfused with glucosamine (0–10 mM) to increase HBP flux under normoxic conditions. Metabolic fluxes were determined by 13C-NMR isotopomer analysis; UDP-GlcNAc a precursor of O-GlcNAc synthesis was assessed by HPLC and immunoblot analysis was used to determine O-GlcNAc levels, phospho- and total levels of AMPK and ACC, and membrane levels of FAT/CD36.ResultsGlucosamine caused a dose dependent increase in both UDP-GlcNAc and O-GlcNAc levels, which was associated with a significant increase in palmitate oxidation with a concomitant decrease in lactate and pyruvate oxidation. There was no effect of glucosamine on AMPK or ACC phosphorylation; however, membrane levels of the fatty acid transport protein FAT/CD36 were increased and preliminary studies suggest that FAT/CD36 is a potential target for O-GlcNAcylation.Conclusion/InterpretationThese data demonstrate that acute modulation of HBP and protein O-GlcNAcylation in the heart stimulates fatty acid oxidation, possibly by increasing plasma membrane levels of FAT/CD36, raising the intriguing possibility that the HBP and O-GlcNAc turnover represent a novel, glucose dependent mechanism for regulating cardiac metabolism.
Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.
Background and purpose: Reactive oxygen and nitrogen species play an important role in the development of diabetic cardiomyopathy. They can activate matrix metalloproteinases (MMPs), and MMP-2 in particular is known to mediate early consequences of oxidative stress injury in the heart. Therefore, we investigated the role of MMP-2 and the effect of the MMP inhibitor doxycycline on the changes of heart function caused by diabetes. Experimental approach: Using streptozotocin-induced diabetic rats, we evaluated the effect of doxycycline on both mechanical and electrical function of isolated hearts, papillary muscle and cardiomyocytes. Key results: Doxycycline abolished the diabetes-induced depression in left ventricular developed pressure and the rates of changes in developed pressure in isolated hearts and normalized the prolongation of the action potential in papillary muscles. In cardiomyocytes isolated from doxycycline-treated diabetic rats, the altered kinetic parameters of Ca 2 þ transients, depressed Ca 2 þ loading of sarcoplasmic reticulum and basal intracellular Ca 2 þ level, and the spatio-temporal properties of Ca 2 þ sparks were significantly restored. Gelatin zymography and western blot data indicated that the diabetes-induced alterations in MMP-2 activity and protein level, level of tissue inhibitor of matrix metalloproteinase-4 and loss of troponin I were restored to control levels with doxycycline. Conclusions and implications: Our data suggest that these beneficial effects of doxycycline on the mechanical, electrical and biochemical properties of the diabetic rat heart appear, at least in part, to be related to inhibition of MMP activity, implying a role for MMPs in the development of diabetic cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.