The use of cardiopulmonary bypass (CPB) during cardiac surgery is associated with a hemostatic defect, the hallmark of which is a markedly prolonged bleeding time. However, the nature of the putative platelet function defect is controversial. In this study, blood was analyzed at 10 time points before, during, and after CPB. We used a whole-blood flow cytometric assay to study platelet surface glycoproteins in (1) peripheral blood, (2) peripheral blood activated in vitro by either phorbol myristate acetate, the thromboxane (TX)A2 analog U46619, or a combination of adenosine diphosphate and epinephrine, and (3) the blood emerging from a bleeding-time wound (shed blood). Activation-dependent changes were detected by monoclonal antibodies directed against the glycoprotein (GP)Ib-IX and GPIIb-IIIa complexes and P-selectin. In addition, we measured plasma glycocalicin (a proteolytic fragment of GPIb) and shed-blood TXB2 (a stable breakdown product of TXA2). In shed blood emerging from a bleeding-time wound, the usual time-dependent increase in platelet surface P-selectin was absent during CPB, but returned to normal within 2 hours. This abnormality paralleled both the CPB-induced prolongation of the bleeding time and a CPB-induced marked reduction in shed-blood TXB2 generation. In contrast, there was no loss of platelet reactivity to in vitro agonists during or after CPB. In peripheral blood, platelet surface P-selectin was negligible at every time point, demonstrating that CPB resulted in a minimal number of circulating degranulated platelets. CPB did not change the platelet surface expression of GPIb in peripheral blood, as determined by the platelet binding of a panel of monoclonal antibodies, ristocetin-induced binding of von Willebrand factor, and a lack of increase in plasma glycocalicin. CPB did not change the platelet surface expression of the GPIIb-IIIa complex in peripheral blood, as determined by the platelet binding of fibrinogen and a panel of monoclonal antibodies. In summary, CPB resulted in (1) markedly deficient platelet reactivity in response to an in vivo wound, (2) normal platelet reactivity in vitro, (3) no loss of the platelet surface GPIb-IX and GPIIb-IIIa complexes, and (4) a minimal number of circulating degranulated platelets. These data suggest that the “platelet function defect” of CPB is not a defect intrinsic to the platelet, but is an extrinsic defect such as an in vivo lack of availability of platelet agonists. The near universal use of heparin during CPB is likely to contribute substantially to this defect via its inhibition of thrombin, the preeminent platelet activator.
We have infused recombinant factor VIIa into patients with hereditary factor VII deficiency with marked reductions in plasma concentrations of factor IX activation peptide (FIXP), factor X activation peptide (FXP), and prothrombin activation fragment F1+2. These investigations show substantial elevations in these markers of coagulation activation and thereby demonstrate that the factor VII-tissue factor pathway is largely responsible for the activation of factor IX as well as factor X in the basal state (ie, the absence of thrombosis or provocative stimuli). We have administered a monoclonal antibody purified factor IX concentrate to individuals with hemophilia B. These studies show an increase in the plasma levels of FIXP that were initially greatly decreased, but no change in FXP or F1+2. We have also infused highly purified factor VIII concentrate into patients with hemophilia A. The data demonstrate no significant changes in the plasma concentrations of FXP and F1+2. The above observations indicate that factor IXa generated by the factor VII-tissue factor pathway is unable to activate factor X under basal conditions. Based upon the above findings, we outline a model of blood coagulation system function under basal conditions, and suggest a process by which the generation of factor Xa and thrombin might be accelerated during normal hemostasis and in the setting of thrombotic disorders.
We have infused recombinant factor VIIa into patients with hereditary factor VII deficiency with marked reductions in plasma concentrations of factor IX activation peptide (FIXP), factor X activation peptide (FXP), and prothrombin activation fragment F1+2. These investigations show substantial elevations in these markers of coagulation activation and thereby demonstrate that the factor VII-tissue factor pathway is largely responsible for the activation of factor IX as well as factor X in the basal state (ie, the absence of thrombosis or provocative stimuli). We have administered a monoclonal antibody purified factor IX concentrate to individuals with hemophilia B. These studies show an increase in the plasma levels of FIXP that were initially greatly decreased, but no change in FXP or F1+2. We have also infused highly purified factor VIII concentrate into patients with hemophilia A. The data demonstrate no significant changes in the plasma concentrations of FXP and F1+2. The above observations indicate that factor IXa generated by the factor VII-tissue factor pathway is unable to activate factor X under basal conditions. Based upon the above findings, we outline a model of blood coagulation system function under basal conditions, and suggest a process by which the generation of factor Xa and thrombin might be accelerated during normal hemostasis and in the setting of thrombotic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.