Powder compacted and sintered solid oxide preforms, generally shaped as thin pellets, have been used as the negative electrode of a molten salt electro-deoxidation cell and deoxidation of the electrode is greatly influenced by its electrical conductivity. The deoxidation pattern of electron conducting and non-conducting oxide preforms should, therefore, be different. In order to demonstrate this experimentally, novel electrochemical experiments were carried out with electron conducting TiO 2 and non-conducting SiO 2 pellet electrodes in calcium chloride melt at 1173 K. The experimental results have shown, as already reported by many previously, that three physically distinct phases, viz. the solid electron conductor, the oxide and the electrolyte melt should coexist for electro-deoxidation of non-conducting SiO 2 electrode but only two physically distinct phases, viz. the oxide and the electrolyte melt need only to coexist in the case of conducting TiO 2 electrode. It is demonstrated in this study, for the first time, that the 3 Phase Interline (3PI) mechanism, proposed to explain electro-deoxidation of solid oxides in general, stands reduced to 2 Phase Interface (2 PI) mechanism in the case of conducting oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.