Gonadal hormones not only play a pivotal role in reproductive behavior and sexual differentiation, they also contribute to thermoregulation, feeding, memory, neuronal survival, and the perception of somatosensory stimuli. Numerous studies on both animals and human subjects have also demonstrated the potential effects of gonadal hormones, such as estrogens, on pain transmission. These effects most likely involve multiple neuroanatomical circuits as well as diverse neurochemical systems and they therefore need to be evaluated specifically to determine the localization and intrinsic characteristics of the neurons engaged. The aim of this review is to summarize the morphological as well as biochemical evidence in support for gonadal hormone modulation of nociceptive processing, with particular focus on estrogens and spinal cord mechanisms.
Enkephalin-synthesizing neurons in the superficial laminae of the spinal and trigeminal dorsal horn are critical components of the endogenous pain-modulatory system. We have previously demonstrated that these neurons display intracellular estrogen receptors, suggesting that estrogen can potentially influence their enkephalin expression. By using Northern blot, we now show that a bolus injection of estrogen results in a rapid increase in spinal cord enkephalin mRNA levels in ovariectomized female rats. Thus, 4 h after estrogen administration the enkephalin mRNA-expression in the lumbar spinal cord was on average 68% higher (P<0.05) than in control animals injected with vehicle only. A small increase in the amount of enkephalin mRNA was also seen after 8 h (P<0.05), whereas no difference between estrogen-injected and control animals was found after 24 h or at time periods shorter than 4 h. Taken together with the previous anatomical data, the present findings imply that estrogen has an acute effect on spinal opioid levels in areas involved in the transmission of nociceptive information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.