BackgroundStreptococcus dysgalactiae and Streptococcus uberis are common causes of clinical mastitis (CM) in dairy cows. In the present study genotype variation of S. dysgalactiae and S. uberis was investigated, as well as the influence of bacterial species, or genotype within species, on the outcome of veterinary-treated CM (VTCM). Isolates of S. dysgalactiae (n = 132) and S. uberis (n = 97) were genotyped using pulsed-field gel electrophoresis. Identical banding patterns were called pulsotypes. Outcome measurements used were cow composite SCC, milk yield, additional registered VTCMs and culling rate during a four-month follow-up period.ResultsIn total, 71 S. dysgalactiae pulsotypes were identified. Nineteen of the pulsotypes were isolated from more than one herd; the remaining pulsotypes were only found once each in the material. All S. uberis isolates were of different pulsotypes. During the follow-up period, the SCC of S. dysgalactiae-cows was significantly lower than the SCC of S. uberis-cows (P <0.05). Median SCC of S. dysgalactiae-cows was 71 500 cells/ml and of S. uberis-cows 108 000 cells/ml. No other differences in outcome parameters could be identified between species or genotypes.ConclusionsIdentical S. dysgalactiae genotypes were isolated from more than one herd, suggesting some spread of this pathogen between Swedish dairy herds. The genetic variation among S. uberis isolates was substantial, and we found no evidence of spread of this pathogen between herds. The milk SCC was lower during the follow-up period if S. dysgalactiae rather than S. uberis was isolated from the case, indicating differences in treatment response between bacterial species.Electronic supplementary materialThe online version of this article (doi:10.1186/s13028-014-0080-0) contains supplementary material, which is available to authorized users.
Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis are common causes of bovine mastitis. To study these pathogens in early lactation, a 12-mo longitudinal, observational study was carried out in 13 herds with suboptimal udder health. The aims of the study were to investigate the occurrence of these pathogens and to identify if presence of the 3 pathogens, and of genotypes within the pathogens, differed with respect to herd, season, and parity. Quarter milk samples, collected at calving and 4 d in milk (DIM), were cultured for the 3 pathogens. Genotyping of staphylococcal and streptococcal isolates was performed using spa typing and pulsed-field gel electrophoresis, respectively. For each of the 3 pathogens, cows with an udder infection at calving or 4 DIM were allocated to 1 of 4 infection types: cleared (pathogen present only at calving), persistent (pathogen present in the same quarter at calving and 4 DIM), new (pathogen present only at 4 DIM), or cleared/new (pathogen present in 1 quarter at calving and in another quarter at 4 DIM). Associations between season or parity and overall occurrence of pathogens or infection types were determined using univariable mixed-effect logistic-regression models and the Fisher's exact test, respectively. The most commonly occurring pathogen was Staph. aureus, followed by Strep. dysgalactiae and Strep. uberis. Persistent infections were the most common infection type among Staph. aureus-infected cows, whereas cleared infections were the most common among Strep. dysgalactiae- and Strep. uberis-positive cows. The proportion of cows with persistent Staph. aureus infections and the proportion of cows having a Strep. uberis infection at calving or 4 DIM were higher in the multiparous cows than in primiparous cows. Infections with Strep. dysgalactiae were less common during the early housing season than during the late housing or pasture seasons, whereas persistent Strep. uberis infections were less common during the pasture season than during the late housing season. The relative occurrence of the 3 pathogens, infection types of each pathogen, and genotype diversity of each pathogen throughout the year or in different seasons and parities varied among the herds, indicating that underlying factors predisposing for udder infections at calving differ between herds. Genotyping of bacterial isolates gave important insight into how such infection patterns differed within and between herds. These findings emphasize the need to choose preventive strategies for each individual herd.
BackgroundStaphylococcus aureus is an important cause of clinical mastitis in dairy cows worldwide. The cure rate after antimicrobial treatment of clinical S. aureus mastitis is very variable due to both cow and bacterial factors. Studies have shown that bacterial genotype might affect short-term bacteriological and clinical cure, but the long-term outcome has been less studied. The objectives of this study were to investigate associations between bacterial genotype and long-term outcome of veterinary-treated clinical mastitis (VTCM) caused by S. aureus during a follow-up period of 120 days and to study genotype variation among Swedish S. aureus isolates. S. aureus isolates from cases of VTCM were genotyped by pulsed-field gel electrophoresis. Long-term outcome measurements used were somatic cell count (SCC), additional diagnoses of VTCM, milk yield and culling. Isolates were classified into clusters (>80% similarity) and pulsotypes (100% similarity). Clusters and pulsotypes were grouped according to occurrence. Multivariable mixed-effect linear regression models including cow and bacterial factors with possible influence on SCC or milk yield were used to calculate differences in SCC or milk yield between groups. Additional outcome measures were calculated using a test of proportions.ResultsThe isolates (n = 185) were divided into 18 clusters and 29 pulsotypes. Two pulsotypes were classified as common, and were found in 64% of the cases of VTCM. Remaining isolates were classified as less common or rare pulsotypes. The distribution was similar at cluster level. Outcome was calculated from follow-up data on 111 cows. Significantly lower SCC during the follow-up period was found in cows infected with common clusters compared to in cows infected with less common/rare clusters. The proportion of cows with SCC <200 000 cells/ml during the whole follow-up period was significantly higher in the group common clusters than in the group less common/rare clusters. Bacterial genotype did not influence the other outcome parameters.ConclusionsIn Sweden, two S. aureus pulsotypes, identified in about 64% of clinical S. aureus cases, were widespread. Cows infected with the common genotypes had significantly lower SCC during 120 days after treatment compared to cows infected with less common or rare genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.