The brain serotonergic system is colocalized and interacts with the neuropeptidergic substance P/neurokinin-1 (SP/NK1) system. Both these neurochemical systems have independently been implicated in stress and anxiety, but interactions between them might be crucial for human anxiety conditions. Here, we examined the serotonin and substance P/neurokinin-1 (SP/NK1) systems individually as well as their overlapping expression in 16 patients with posttraumatic stress disorder (PTSD) and 16 healthy controls. Participants were imaged with the highly selective radiotracers [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB) and [(11)C]GR205171 assessing serotonin transporter (SERT) and NK1 receptor availability, respectively. Voxel-wise analyses in the amygdala, our a priori-defined region of interest, revealed increased number of NK1 receptors, but not SERT in the PTSD group. Symptom severity, as indexed by the Clinician-administered PTSD Scale, was negatively related to SERT availability in the amygdala, and NK1 receptor levels moderated this relationship. Exploratory, voxel-wise whole-brain analyses revealed increased SERT availability in the precentral gyrus and posterior cingulate cortex of PTSD patients. Patients, relative to controls, displayed lower degree of overlapping expression between SERT and NK1 receptors in the putamen, thalamus, insula and lateral orbitofrontal gyrus, lower overlap being associated with higher PTSD symptom severity. Expression overlap also explained more of the symptomatology than did either system individually, underscoring the importance of taking interactions between the neurochemical systems into account. Thus, our results suggest that aberrant serotonergic-SP/NK1 couplings contribute to the pathophysiology of PTSD and, consequently, that normalization of these couplings may be therapeutically important.
Our results indicate a relationship between emotional responses, PD, and dopaminergic therapy, in which PD per se is associated with stronger emotional responses, whereas LED levels are negatively correlated with the strength of emotional responses. (PsycINFO Database Record
Phobic fear is accompanied by intense bodily responses modulated by the amygdala. An amygdala moderated psychophysiological measure related to arousal is electrodermal activity. We evaluated the contributions of electrodermal activity to amygdala-parahippocampal regional cerebral blood flow (rCBF) during phobic memory encoding in subjects with spider or snake phobia. Recognition memory was increased for phobia-related slides and covaried with rCBF in the amygdala and the parahippocampal gyrus. The covariation between parahippocampal rCBF and recognition was related to electrodermal activity suggesting that parahippocampal memory processes were associated with sympathetic activity. Electrodermal activity further mediated the amygdala effect on parahippocampal activity. Memory encoding during phobic fear therefore seems contingent on amygdala's influence on arousal and parahippocampal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.